ETH Price: $2,904.96 (+0.77%)
 

Overview

ETH Balance

Scroll LogoScroll LogoScroll Logo0.000035712864671705 ETH

ETH Value

$0.10 (@ $2,904.96/ETH)

Token Holdings

More Info

Private Name Tags

TokenTracker

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Deposit125326042025-01-08 1:01:09384 days ago1736298069IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000061820.15
Deposit125074372025-01-07 1:00:52385 days ago1736211652IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00006330.15
Deposit124827702025-01-06 1:00:32386 days ago1736125232IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000062740.15
Deposit124588632025-01-05 1:00:47387 days ago1736038847IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000020370.15
Rebalance124588612025-01-05 1:00:41387 days ago1736038841IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000029280.04027434
Deposit124354202025-01-04 1:00:39388 days ago1735952439IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000062420.15
Deposit124112162025-01-03 1:00:37389 days ago1735866037IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000063060.15
Deposit123879532025-01-02 1:00:23390 days ago1735779623IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000072550.15
Deposit123402202024-12-31 1:00:50392 days ago1735606850IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000061170.15
Deposit123141172024-12-30 1:00:28393 days ago1735520428IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000061070.15
Deposit122890622024-12-29 1:00:23394 days ago1735434023IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000060740.15
Deposit122634662024-12-28 1:00:34395 days ago1735347634IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000061220.15
Deposit121839882024-12-25 1:00:34398 days ago1735088434IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000060480.15
Deposit121577322024-12-24 1:00:38399 days ago1735002038IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00006290.15
Rebalance121047932024-12-22 1:00:49401 days ago1734829249IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000028110.04018919
Deposit121047862024-12-22 1:00:27401 days ago1734829227IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000059680.15
Deposit120788922024-12-21 1:00:29402 days ago1734742829IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00005960.15
Deposit120523222024-12-20 1:00:42403 days ago1734656442IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000060840.15
Deposit120251912024-12-19 1:00:41404 days ago1734570041IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000064130.15
Deposit119984582024-12-18 1:00:27405 days ago1734483627IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000063510.15
Deposit119730352024-12-17 1:00:29406 days ago1734397229IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000063630.15
Deposit119453562024-12-16 1:00:38407 days ago1734310838IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.000065540.15
Deposit119188452024-12-15 1:00:30408 days ago1734224430IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00002050.15
Rebalance119188432024-12-15 1:00:24408 days ago1734224424IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00002990.04039545
Deposit118930712024-12-14 1:00:28409 days ago1734138028IN
0xd00ff7f0...9fe9ABC6F
0 ETH0.00006380.15
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
125326042025-01-08 1:01:09384 days ago1736298069
0xd00ff7f0...9fe9ABC6F
0.00000096 ETH
125326042025-01-08 1:01:09384 days ago1736298069
0xd00ff7f0...9fe9ABC6F
0.00000943 ETH
125326042025-01-08 1:01:09384 days ago1736298069
0xd00ff7f0...9fe9ABC6F
0.00000024 ETH
125074372025-01-07 1:00:52385 days ago1736211652
0xd00ff7f0...9fe9ABC6F
0.00000143 ETH
125074372025-01-07 1:00:52385 days ago1736211652
0xd00ff7f0...9fe9ABC6F
0.00001417 ETH
125074372025-01-07 1:00:52385 days ago1736211652
0xd00ff7f0...9fe9ABC6F
0.0000002 ETH
124827702025-01-06 1:00:32386 days ago1736125232
0xd00ff7f0...9fe9ABC6F
0.00000156 ETH
124827702025-01-06 1:00:32386 days ago1736125232
0xd00ff7f0...9fe9ABC6F
0.00001554 ETH
124827702025-01-06 1:00:32386 days ago1736125232
0xd00ff7f0...9fe9ABC6F
0.00000007 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0.00023418 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0.00007284 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0 ETH
124588612025-01-05 1:00:41387 days ago1736038841
0xd00ff7f0...9fe9ABC6F
0.00000005 ETH
124354202025-01-04 1:00:39388 days ago1735952439
0xd00ff7f0...9fe9ABC6F
0.00000071 ETH
124354202025-01-04 1:00:39388 days ago1735952439
0xd00ff7f0...9fe9ABC6F
0.00000705 ETH
124354202025-01-04 1:00:39388 days ago1735952439
0xd00ff7f0...9fe9ABC6F
0.00000007 ETH
124112162025-01-03 1:00:37389 days ago1735866037
0xd00ff7f0...9fe9ABC6F
0.00000208 ETH
124112162025-01-03 1:00:37389 days ago1735866037
0xd00ff7f0...9fe9ABC6F
0.00002075 ETH
124112162025-01-03 1:00:37389 days ago1735866037
0xd00ff7f0...9fe9ABC6F
0.00000009 ETH
123879532025-01-02 1:00:23390 days ago1735779623
0xd00ff7f0...9fe9ABC6F
0.00000151 ETH
123879532025-01-02 1:00:23390 days ago1735779623
0xd00ff7f0...9fe9ABC6F
0.00001507 ETH
123879532025-01-02 1:00:23390 days ago1735779623
0xd00ff7f0...9fe9ABC6F
0.00000011 ETH
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SymetricAmbientStrategy

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 100 runs

Other Settings:
paris EvmVersion
File 1 of 36 : SymetricAmbientStrategy.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

import { CrocsSwapDex } from "./interfaces/CrocsSwapDex.sol";
import { TickMath } from "src/libraries/TickMath.sol";
import { CrocsQuery, CurveState } from "./interfaces/CrocsQuery.sol";
import { PoolSpecs } from "./libraries/PoolSpecs.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCast } from "./libraries/SafeCast.sol";
import { LiquidityAmounts } from "./libraries/LiquidityAmounts.sol";
import { LiquidityAmountsNative } from "./libraries/LiquidityAmountsNative.sol";
import { IOracle } from "src/interfaces/IOracle.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { AccessControl } from "@openzeppelin/contracts/access/AccessControl.sol";
import { FixedPoint } from "./libraries/FixedPoint.sol";
import { VaultLibrary, TickParameters } from "src/libraries/VaultLibrary.sol";

import "src/utils/Constants.sol";
import "src/utils/Variables.sol";
import "src/utils/Errors.sol";

contract SymetricAmbientStrategy is ReentrancyGuard, ERC20, AccessControl {
  using SafeERC20 for IERC20Metadata;
  using TickMath for int24;
  using SafeCast for uint256;
  using Math for *;

  bool isDepositing;
  uint8 private immutable assetIdx;
  uint8 private immutable _decimals;
  uint8 public padding = 4;
  uint16 public fee;
  uint16 public investedPercentage;
  uint16 public swapSlippage;
  int24 public baseWidth;
  int24 public limitWidth;
  address public oracle;
  LpParam[] private lpParams;
  bytes32 public constant GOVERNANCE_ROLE = keccak256("GOVERNANCE");
  bytes32 public constant GUARDIAN_ROLE = keccak256("GUARDIAN");
  address public feeRecipient;
  CrocsSwapDex public immutable crocsSwapDex;
  CrocsQuery public immutable crocsQuery;
  address[2] public tokenAddresses;

  event Withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares);
  event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
  event FeesSet(uint16 fee);
  event FeeRecipientSet(address feeRecipient);
  event InvestedPercentageSet(uint16 investedPercentage);
  event SwapSlippageSet(uint16 swapSlippage);
  event OracleSet(address oracle);
  event PaddingSet(uint8 padding);
  event BaseAndLimitUpdated(int24 baseWidth, int24 limitWidth);

  modifier depositing() {
    isDepositing = true;
    _;
    isDepositing = false;
  }

  struct SwapParams {
    address tokenIn;
    address tokenOut;
    uint256 amountIn;
  }

  constructor(
    int24 _baseWidth,
    int24 _limitWidth,
    SymetricStrategyParameters memory sParams
  ) ERC20(sParams.name, sParams.symbol) {
    if (
      sParams.governor == address(0) ||
      sParams.feeRecipient == address(0) ||
      sParams.oracle == address(0) ||
      sParams.token0 > sParams.token1 ||
      sParams.fee > BASE ||
      sParams.investedPercentage > BASE ||
      sParams.swapSlippage > BASE
    ) {
      revert BadSetup();
    }

    crocsQuery = CrocsQuery(sParams.cQuery);
    crocsSwapDex = CrocsSwapDex(sParams.cSwapDex);

    CrocsQuery.Pool memory poolParams = crocsQuery.queryPoolParams(sParams.token0, sParams.token1, 420);
    int24 tickSize = int24(int16(poolParams.tickSize_));

    uint8 token0Decimals = sParams.token0 == address(0) ? 18 : IERC20Metadata(sParams.token0).decimals();
    uint8 token1Decimals = IERC20Metadata(sParams.token1).decimals();

    uint8 oracleDecimals = IOracle(sParams.oracle).decimals();
    uint256 oraclePrice = (uint256(IOracle(sParams.oracle).latestAnswer()) * 10 ** token0Decimals) /
      10 ** oracleDecimals;

    tokenAddresses[0] = sParams.token0;
    tokenAddresses[1] = sParams.token1;

    TickParameters memory params = TickParameters({
      oraclePrice: oraclePrice,
      baseWidth: _baseWidth,
      limitWidth: _limitWidth,
      tickSize: tickSize,
      token1Decimals: token1Decimals,
      currentTick: currentTick(),
      isLimitRight: true
    });

    (int24[] memory _upperTicks, int24[] memory _lowerTicks) = VaultLibrary.setTicks(params);

    VaultLibrary.checkLiqParams(_upperTicks, _lowerTicks, tickSize);

    assetIdx = sParams.assetIdx;
    _decimals = tokenAddresses[sParams.assetIdx] == address(0)
      ? 18
      : IERC20Metadata(tokenAddresses[sParams.assetIdx]).decimals();

    _initLpParams(_upperTicks, _lowerTicks);

    if (sParams.token0 != address(0)) {
      IERC20Metadata(sParams.token0).safeIncreaseAllowance(address(crocsSwapDex), type(uint256).max);
    }
    IERC20Metadata(sParams.token1).safeIncreaseAllowance(address(crocsSwapDex), type(uint256).max);

    feeRecipient = sParams.feeRecipient;
    fee = sParams.fee;
    investedPercentage = sParams.investedPercentage;
    swapSlippage = sParams.swapSlippage;
    baseWidth = _baseWidth;
    limitWidth = _limitWidth;
    oracle = sParams.oracle;
    _setRoleAdmin(GOVERNANCE_ROLE, GOVERNANCE_ROLE);
    _setRoleAdmin(GUARDIAN_ROLE, GOVERNANCE_ROLE);
    _grantRole(GOVERNANCE_ROLE, sParams.governor);
  }

  /// @notice Allows a user to deposit a specified amount of tokens into the contract
  /// @param amount The amount of tokens to deposit
  /// @param receiver The address that will receive the shares of the deposit
  /// @return shares The amount of shares minted for the deposited amount
  /// @dev This function collects fees, performs token swaps, checks the received amount,
  /// calculates liquidity, and provides liquidity before minting shares to the receiver
  /// @dev This function is non-reentrant and ensures proper depositing state

  function deposit(uint256 amount, address receiver) external payable depositing nonReentrant returns (uint256 shares) {
    // Local cache for gas saving
    // Gas optimization
    (LpParam[] memory _lpParams, uint8 _assetIdx, address[2] memory _tokenAddresses) = (
      lpParams,
      assetIdx,
      tokenAddresses
    );
    // Collect fees from the specified tick range

    _collectAllFees(_lpParams, _tokenAddresses, feeRecipient, fee);

    // Preview the number of shares to be minted for the deposit amount
    shares = previewDeposit(amount);

    // Transfer tokens from the user to the contract
    _transferTokenFromUser(_tokenAddresses[_assetIdx], amount);

    // Calculate the buffer amount to be invested
    uint256 investedAmount = amount.mulDiv(investedPercentage, BASE);

    // Swap tokens and get the amounts received and spent
    (uint256 received, uint256 spent) = _swapTokensForLP(
      _lpParams[0].upperTick,
      _lpParams[0].lowerTick,
      _assetIdx,
      oracle,
      investedAmount
    );

    // When tokens are collected by the dex contract, the debit amount is padded by 3 wei compared to the credit amount.
    // (E.g. mint versus burn operation). This is to make sure any rounding effects don't undercollateralize the pool.
    uint256 amountToken1 = _assetIdx == 0 ? received : investedAmount - spent;
    amountToken1 = amountToken1 > padding ? amountToken1 - padding : 0;
    uint256 amountToken0 = _assetIdx == 0 ? investedAmount - spent : received;
    amountToken0 = amountToken0 > padding ? amountToken0 - padding : 0;

    uint128 liq = LiquidityAmountsNative.getLiquidityForAmounts(
      crocsQuery.queryCurve(_tokenAddresses[0], _tokenAddresses[1], 420).priceRoot_,
      TickMath.getSqrtRatioAtTick(_lpParams[0].lowerTick),
      TickMath.getSqrtRatioAtTick(_lpParams[0].upperTick),
      amountToken1,
      amountToken0
    );

    if (liq != 0) {
      // Provide liquidity based on the calculated liquidity and current ticks
      _provideLiquidity(
        _lpParams[0].upperTick,
        _lpParams[0].lowerTick,
        liq,
        _tokenAddresses[0] == address(0) ? (_assetIdx == 0 ? investedAmount - spent : received) : 0
      );
    }

    // Mint shares to the receiver
    _mint(receiver, shares);

    // Emit a deposit event
    emit Deposit(msg.sender, receiver, amount, shares);
  }

  /// @notice Allows a user to withdraw a specified amount of assets from the contract
  /// @param assets The amount of assets to withdraw
  /// @param receiver The address that will receive the withdrawn assets
  /// @param owner The address that owns the shares being withdrawn
  /// @param minimumReceive The minimum amount of assets to be received by the receiver
  /// @return shares The amount of shares burned for the withdrawal
  /// @dev This function collects fees, previews the withdrawal, calculates assets, and performs the withdrawal
  /// @dev This function is non-reentrant and ensures proper withdrawal state
  function withdraw(
    uint256 assets,
    address receiver,
    address owner,
    uint256 minimumReceive
  ) external nonReentrant returns (uint256 shares) {
    // Local cache for gas saving
    (LpParam[] memory _lpParams, address[2] memory _tokenAddresses) = (lpParams, tokenAddresses);

    // Collect fees from the specified tick range
    _collectAllFees(_lpParams, _tokenAddresses, feeRecipient, fee);

    // Preview the number of shares to be burned for the withdrawal amount
    shares = previewWithdraw(assets);

    // Calculate the assets and withdraw liquidity based on the shares
    assets = _withdrawLiquidity(_lpParams, shares, _tokenAddresses);

    // Revert if the assets received are less than the minimum specified
    if (assets < minimumReceive) revert NotEnoughToken();

    // Perform the withdrawal
    _withdraw(msg.sender, receiver, owner, assets, shares, _tokenAddresses[assetIdx]);
  }

  /// @notice Allows a user to redeem shares for a specified amount of assets
  /// @param shares The amount of shares to redeem
  /// @param receiver The address that will receive the redeemed assets
  /// @param owner The address that owns the shares being redeemed
  /// @param minimumReceive The minimum amount of assets to be received by the receiver
  /// @return assets The amount of assets received for the redeemed shares
  /// @dev This function collects fees, calculates assets, and performs the redemption
  /// @dev This function is non-reentrant and ensures proper redemption state
  function redeem(
    uint256 shares,
    address receiver,
    address owner,
    uint256 minimumReceive
  ) external nonReentrant returns (uint256 assets) {
    // Local cache for gas saving
    (LpParam[] memory _lpParams, address[2] memory _tokenAddresses) = (lpParams, tokenAddresses);

    // Collect fees from the specified tick range
    _collectAllFees(_lpParams, _tokenAddresses, feeRecipient, fee);

    // Calculate the assets and withdraw liquidity based on the shares
    assets = _withdrawLiquidity(_lpParams, shares, _tokenAddresses);

    // Revert if the assets received are less than the minimum specified
    if (assets < minimumReceive) revert NotEnoughToken();

    // Perform the withdrawal
    _withdraw(msg.sender, receiver, owner, assets, shares, _tokenAddresses[assetIdx]);
  }

  function rebalance() external nonReentrant onlyRole(GUARDIAN_ROLE) {
    _rebalance(baseWidth, limitWidth);
  }

  function updateBaseAndLimit(int24 _baseWidth, int24 _limitWidth) external nonReentrant onlyRole(GUARDIAN_ROLE) {
    // Validate the input arrays have the same length
    if (_baseWidth == 0) revert BadSetup();
    if (_limitWidth == 0) revert BadSetup();
    baseWidth = _baseWidth;
    limitWidth = _limitWidth;
    emit BaseAndLimitUpdated(_baseWidth, _limitWidth);
    _rebalance(_baseWidth, _limitWidth);
  }

  function _rebalance(int24 _baseWidth, int24 _limitWidth) internal {
    // Query pool parameters for tick size
    CrocsQuery.Pool memory poolParams = crocsQuery.queryPoolParams(tokenAddresses[0], tokenAddresses[1], 420);
    int24 tickSize = int24(int16(poolParams.tickSize_));

    // Create local copies of the LP parameters and token addresses
    (LpParam[] memory _lpParams, address[2] memory _tokenAddresses) = (lpParams, tokenAddresses);

    // Collect fees from the specified tick ranges
    _collectAllFees(_lpParams, _tokenAddresses, feeRecipient, fee);

    // Burn all existing liquidities
    _burnAllLiquidities(0, _lpParams, _tokenAddresses, true);

    (int24[] memory newUpperTicks, int24[] memory newLowerTicks) = processTokenData(
      tokenAddresses,
      oracle,
      _baseWidth,
      _limitWidth,
      tickSize
    );

    // Validate the new tick range
    VaultLibrary.checkLiqParams(newUpperTicks, newLowerTicks, tickSize);

    // Update the tick ranges to the new values
    _initLpParams(newUpperTicks, newLowerTicks);

    // Provide new liquidities based on the updated tick ranges
    _provideAllLiquidities();
  }

  /// @notice Invests the remaining dust amounts by providing liquidity
  /// @dev This function calls _provideAllLiquidities to invest any remaining small amounts of tokens.
  function investDust() external nonReentrant onlyRole(GUARDIAN_ROLE) {
    _provideAllLiquidities();
  }

  function execute(
    address to,
    uint256 value,
    bytes calldata data
  ) external payable nonReentrant onlyRole(GOVERNANCE_ROLE) returns (bool, bytes memory) {
    (bool success, bytes memory result) = to.call{ value: value }(data);
    return (success, result);
  }

  /// @notice Gets the current position in the pool for the specified tick ranges
  /// @param _upperTick The upper tick range
  /// @param _lowerTick The lower tick range
  /// @return The current liquidity, amount of token0, and amount of token1
  /// @dev This function queries the current position for the specified tick ranges and token addresses.
  function getPosition(int24 _upperTick, int24 _lowerTick) external view returns (uint128, uint128, uint128) {
    return _getPosition(_upperTick, _lowerTick, tokenAddresses);
  }

  /// @notice Initializes the LP parameters with the specified tick ranges
  /// @param _upperTicks The upper tick ranges
  /// @param _lowerTicks The lower tick ranges
  /// @dev This function deletes the existing LP parameters and initializes them with the new tick ranges.
  function _initLpParams(int24[] memory _upperTicks, int24[] memory _lowerTicks) internal {
    // Delete the existing LP parameters
    delete lpParams;

    // Get the length of the new tick ranges
    uint256 lenTicks = _upperTicks.length;

    // Initialize the LP parameters with the new tick ranges
    for (uint i; i < lenTicks; ) {
      lpParams.push(LpParam(_upperTicks[i], _lowerTicks[i]));
      unchecked {
        ++i;
      }
    }
  }

  function processTokenData(
    address[2] memory _tokenAddresses,
    address _oracle,
    int24 _baseWidth,
    int24 _limitWidth,
    int24 tickSize
  ) internal view returns (int24[] memory _newUpperTicks, int24[] memory _newLowerTicks) {
    uint8 token0Decimals = _tokenAddresses[0] == address(0) ? 18 : IERC20Metadata(_tokenAddresses[0]).decimals();
    uint8 token1Decimals = IERC20Metadata(_tokenAddresses[1]).decimals();
    uint256 oraclePrice = (uint256(IOracle(_oracle).latestAnswer()) * 10 ** token0Decimals) /
      10 ** IOracle(_oracle).decimals(); // In decimal of token0

    uint256[2] memory balances = _getBalances();

    uint256 balToken1In0 = (balances[1] * oraclePrice) / 10 ** token1Decimals;

    TickParameters memory params = TickParameters({
      oraclePrice: oraclePrice,
      baseWidth: _baseWidth,
      limitWidth: _limitWidth,
      tickSize: tickSize,
      token1Decimals: token1Decimals,
      currentTick: currentTick(),
      isLimitRight: balances[0] < balToken1In0
    });

    (_newUpperTicks, _newLowerTicks) = VaultLibrary.setTicks(params);
  }

  /// @notice Collects all fees from the specified LP parameters and transfers them to the fee recipient
  /// @param _lpParams The LP parameters
  /// @param _tokenAddresses The addresses of the tokens
  /// @param _feeRecipient The address of the fee recipient
  /// @param _fee The fee percentage
  /// @return owed0 The total amount of token0 owed
  /// @return owed1 The total amount of token1 owed
  /// @return feeAmount0 The fee amount in token0
  /// @return feeAmount1 The fee amount in token1
  /// @dev This function iterates over all LP parameters, collects fees, calculates the fee amounts, and transfers them to the fee recipient
  function _collectAllFees(
    LpParam[] memory _lpParams,
    address[2] memory _tokenAddresses,
    address _feeRecipient,
    uint16 _fee
  ) internal returns (int128 owed0, int128 owed1, uint256 feeAmount0, uint256 feeAmount1) {
    // Get the length of the LP parameters array
    uint256 lpLength = lpParams.length;

    // Iterate over all LP parameters
    for (uint i; i < lpLength; ) {
      (, int128 curOwed0, int128 curOwed1) = _collectFees(
        _lpParams[i].upperTick,
        _lpParams[i].lowerTick,
        _tokenAddresses
      );
      // Sum up the owed amounts for token0 and token1
      owed0 += curOwed0;
      owed1 += curOwed1;
      unchecked {
        ++i;
      }
    }

    // Calculate and transfer the fee for token0 if owed
    if (owed0 < 0) {
      feeAmount0 = uint256(uint128(-owed0)).mulDiv(_fee, BASE);
      if (_tokenAddresses[0] == address(0)) {
        // Transfer the fee amount in ETH
        payable(_feeRecipient).transfer(feeAmount0);
      } else {
        // Transfer the fee amount in token0
        IERC20Metadata(_tokenAddresses[0]).safeTransfer(_feeRecipient, feeAmount0);
      }
    }

    // Calculate and transfer the fee for token1 if owed
    if (owed1 < 0) {
      feeAmount1 = uint256(uint128(-owed1)).mulDiv(_fee, BASE);
      // Transfer the fee amount in token1
      IERC20Metadata(_tokenAddresses[1]).safeTransfer(_feeRecipient, feeAmount1);
    }
  }

  /// @notice Collects fees from the specified tick ranges
  /// @param _upperTick The upper tick range
  /// @param _lowerTick The lower tick range
  /// @param _tokenAddresses The addresses of the tokens
  /// @return liq The current liquidity
  /// @return owed0 The amount of token0 owed
  /// @return owed1 The amount of token1 owed
  /// @dev This function constructs commands for collecting fees and sends them to the crocsSwapDex contract
  function _collectFees(
    int24 _upperTick,
    int24 _lowerTick,
    address[2] memory _tokenAddresses
  ) internal returns (uint128 liq, int128 owed0, int128 owed1) {
    // Get the current position for the specified tick ranges and token addresses
    (liq, , ) = _getPosition(_upperTick, _lowerTick, _tokenAddresses);
    if (liq <= 0) return (0, 0, 0);

    // Encode the command for collecting fees
    bytes memory cmd = abi.encode(
      2, // Command type for collecting fees
      _tokenAddresses[0],
      _tokenAddresses[1],
      420,
      _lowerTick,
      _upperTick,
      0,
      0,
      type(uint128).max,
      0,
      address(0)
    );
    // Send the command to the crocsSwapDex contract
    crocsSwapDex.userCmd(128, cmd);

    // Encode the command for querying fees
    cmd = abi.encode(
      5, // Command type for querying fees
      _tokenAddresses[0],
      _tokenAddresses[1],
      uint256(420),
      _lowerTick,
      _upperTick,
      0,
      0,
      type(uint128).max,
      0,
      address(0)
    );

    // Send the command to the crocsSwapDex contract and decode the response
    bytes memory outUserCmd = crocsSwapDex.userCmd(128, cmd);
    (owed0, owed1) = abi.decode(outUserCmd, (int128, int128));
  }

  /// @notice Calculates the amount of tokens to swap based on the current tick and provided parameters
  /// @param _assetIdx The index of the asset to swap (0 for token0, 1 for token1)
  /// @param _curTick The current tick of the pool
  /// @param _upperTick The upper tick range
  /// @param _lowerTick The lower tick range
  /// @param _amount The amount of the asset to swap
  /// @param _tokenAddress The addresses of the tokens involved in the swap
  /// @return The amount of tokens to swap
  /// @dev This function calculates the swap amount considering the current tick position relative to the tick ranges

  function _calcAmountToSwap(
    uint8 _assetIdx,
    int24 _curTick,
    int24 _upperTick,
    int24 _lowerTick,
    uint256 _amount,
    address[2] memory _tokenAddress
  ) internal view returns (uint256) {
    // If the current tick is above the upper tick, return the entire amount for token1 if assetIdx is 1
    if (_curTick > _upperTick) {
      return _assetIdx * _amount;
    }
    // If the current tick is below the lower tick, return the entire amount for token0 if assetIdx is 0
    if (_curTick < _lowerTick) {
      return (1 - _assetIdx) * _amount;
    }

    // Get the decimals for token0 and token1
    uint8 token0Decimals = _tokenAddress[0] == address(0) ? 18 : IERC20Metadata(_tokenAddress[0]).decimals();
    uint8 token1Decimals = IERC20Metadata(_tokenAddress[1]).decimals();
    uint128 sqrtPrice = crocsQuery.queryCurve(tokenAddresses[0], tokenAddresses[1], 420).priceRoot_;
    // Calculate the amount of token1 in terms of token0
    uint256 token1InToken0 = ((uint256(sqrtPrice) * uint256(sqrtPrice)) * 10 ** token1Decimals) >> 128;

    // Calculate liquidity for token0 and token1 at the given tick ranges
    uint128 liq0 = LiquidityAmountsNative.getLiquidityForAmount1(
      TickMath.getSqrtRatioAtTick(_lowerTick),
      sqrtPrice,
      10 ** token0Decimals
    );
    uint128 liq1 = LiquidityAmountsNative.getLiquidityForAmount0(
      sqrtPrice,
      TickMath.getSqrtRatioAtTick(_upperTick),
      10 ** token1Decimals
    );

    uint256 amountTokenToSwap;

    // Calculate the amount to swap based on asset index
    if (_assetIdx == 0) {
      // Calculate the ratio of liquidity
      uint256 ratioBase18 = liq0.mulDiv(1e18, liq1);
      // Calculate the amount of token1 to swap
      uint256 amountToken1 = (ratioBase18).mulDiv(
        _amount * 1e18,
        10 ** (token0Decimals + 18) + ratioBase18 * token1InToken0
      );
      // Calculate the final amount to swap
      amountTokenToSwap = (_amount * 1e18 - amountToken1 * token1InToken0) / 1e18;
    } else {
      // Convert amount to new units
      uint256 newAmount = _amount.mulDiv(token1InToken0, 10 ** token0Decimals);
      // Calculate the ratio of liquidity
      uint256 ratioBase18 = liq1.mulDiv(1e18, liq0);
      // Calculate the amount of token0 to swap
      uint256 amountToken0 = ratioBase18.mulDiv(
        newAmount * 10 ** (18 + token0Decimals),
        token1InToken0 * 10 ** (token1Decimals + 18) + ratioBase18 * 10 ** (token1Decimals + token0Decimals)
      );
      // Calculate the final amount to swap
      amountTokenToSwap = (newAmount * 1e18 - amountToken0 * 10 ** token1Decimals).mulDiv(
        10 ** token0Decimals,
        token1InToken0 * 1e18
      );
    }

    // Return the calculated amount to swap
    return amountTokenToSwap;
  }

  /// @notice Swaps tokens for liquidity provision and calculates the received and spent amounts
  /// @param _lowerTick The lower tick range
  /// @param _upperTick The upper tick range
  /// @param _assetIdx The index of the asset to swap (0 for token0, 1 for token1)
  /// @param _oracle oracle
  /// @return received The amount of tokens received from the swap
  /// @return spent The amount of tokens spent for the swap
  function _swapTokensForLP(
    int24 _upperTick,
    int24 _lowerTick,
    uint8 _assetIdx,
    address _oracle,
    uint256 investedAmount
  ) internal returns (uint256 received, uint256 spent) {
    // Swap tokens and get the amounts received and spent
    (received, spent) = _swapTokens(
      SwapParams(
        tokenAddresses[_assetIdx],
        tokenAddresses[1 - _assetIdx],
        _calcAmountToSwap(_assetIdx, currentTick(), _upperTick, _lowerTick, investedAmount, tokenAddresses)
      )
    );

    // Check the received amount after swapping
    _checkReceivedAmount(investedAmount, investedAmount - spent, received, _assetIdx == 0, _oracle);
  }

  /// @notice Provides liquidity for the specified tick ranges
  /// @param _upperTick The upper tick range
  /// @param _lowerTick The lower tick range
  /// @param liq The liquidity to provide
  /// @param ethVal The value of ETH to send with the transaction
  /// @dev This function constructs a command for adding liquidity and sends it to the crocsSwapDex contract
  function _provideLiquidity(int24 _upperTick, int24 _lowerTick, uint128 liq, uint256 ethVal) internal {
    // Encode the command for adding liquidity with relevant parameters
    bytes memory cmd = abi.encode(
      1, // 1 = AddLiquidity
      tokenAddresses[0],
      tokenAddresses[1],
      uint256(420),
      _lowerTick,
      _upperTick,
      (((liq * investedPercentage) / BASE) >> 11) << 11,
      uint128(0),
      type(uint128).max,
      uint8(0),
      address(0)
    );

    uint256 valueMsgSender;

    // Adjust ethVal if the first token is ETH
    if (tokenAddresses[0] == address(0)) {
      valueMsgSender = ethVal;
    }

    // Send the command to the crocsSwapDex contract
    crocsSwapDex.userCmd{ value: valueMsgSender }(128, cmd);
  }

  /// @notice Swaps tokens based on the provided parameters
  /// @param params The parameters for the token swap
  /// @return received The amount of tokens received from the swap
  /// @return spent The amount of tokens spent for the swap
  /// @dev This function performs a token swap and calculates the received and spent amounts

  function _swapTokens(SwapParams memory params) internal returns (uint256 received, uint256 spent) {
    // Return if the input amount is zero
    if (params.amountIn == 0) return (0, 0);

    // Determine the base and quote tokens and whether to sell the base token
    (address _baseToken, address _quoteToken, bool sellBase) = params.tokenIn < params.tokenOut
      ? (params.tokenIn, params.tokenOut, true)
      : (params.tokenOut, params.tokenIn, false);

    // Get the current token balances
    uint256[2] memory beforeBalList = _getBalances();
    uint256 beforeBal;
    uint256 beforeBalIn;

    // Determine the balances before the swap
    if (params.tokenIn == tokenAddresses[0]) {
      (beforeBalIn, beforeBal) = (beforeBalList[0], beforeBalList[1]);
    } else {
      (beforeBal, beforeBalIn) = (beforeBalList[0], beforeBalList[1]);
    }

    // Perform the token swap
    _swap(sellBase, _baseToken, _quoteToken, params.amountIn);

    // Calculate the amount of tokens received from the swap
    received = params.tokenOut == address(0)
      ? address(this).balance - beforeBal
      : IERC20Metadata(params.tokenOut).balanceOf(address(this)) - beforeBal;

    // Calculate the amount of tokens spent for the swap
    spent = params.tokenIn == address(0)
      ? address(this).balance
      : IERC20Metadata(params.tokenIn).balanceOf(address(this));
    spent = beforeBalIn - spent;
  }

  /// @notice Performs a token swap
  /// @param sellBase Indicates whether to sell the base token
  /// @param _baseToken The address of the base token
  /// @param _quoteToken The address of the quote token
  /// @param amountIn The amount of the base token to swap
  /// @dev This function constructs a command for the swap and sends it to the crocsSwapDex contract
  function _swap(bool sellBase, address _baseToken, address _quoteToken, uint256 amountIn) internal {
    // Encode the command for the swap
    bytes memory cmd = abi.encode(
      _baseToken,
      _quoteToken,
      420,
      sellBase,
      sellBase,
      amountIn.toUint128(),
      0,
      sellBase ? uint128(21_267_430_153_580_247_136_652_501_917_186_561_137) : uint128(65_538),
      0,
      0
    );
    uint256 valueMsgSender;

    // Set the value to send with the transaction if selling the base token and it's ETH
    if (sellBase && _baseToken == address(0)) {
      valueMsgSender = amountIn;
    }

    // Send the command to the crocsSwapDex contract
    crocsSwapDex.userCmd{ value: valueMsgSender }(1, cmd);
  }

  /// @notice Gets the current position in the pool
  /// @param _lowerTick The lower tick range
  /// @param _upperTick The upper tick range
  /// @return liquidity The current liquidity
  /// @return amount0 The amount of token0
  /// @return amount1 The amount of token1
  /// @dev This function queries the current range tokens from the crocsQuery contract
  function _getPosition(
    int24 _upperTick,
    int24 _lowerTick,
    address[2] memory _tokenAddresses
  ) internal view returns (uint128 liquidity, uint128 amount0, uint128 amount1) {
    (liquidity, amount0, amount1) = crocsQuery.queryRangeTokens(
      address(this),
      _tokenAddresses[0],
      _tokenAddresses[1],
      420,
      _lowerTick,
      _upperTick
    );
  }

  /**
   * @dev Provides all calculated liquidities based on the current balances and tick ranges.
   *
   * This function performs the following steps:
   * 1. Retrieves the current token balances.
   * 2. Calculates the new liquidity amount based on the current tick and given tick ranges.
   * 3. Provides new liquidity using the updated tick ranges and calculated liquidity.
   * 4. Repeats the process for a different set of tick ranges.
   */
  function _provideAllLiquidities() internal {
    // Get the current token balances
    CurveState memory curveState = crocsQuery.queryCurve(tokenAddresses[0], tokenAddresses[1], 420);
    LpParam[] memory _lpParams = lpParams;
    uint256 lpParamsLength = lpParams.length;

    for (uint256 i; i < lpParamsLength; ) {
      (uint128 liq, uint256 _ethVal) = _computeLiquidityFromTicks(
        curveState.priceRoot_,
        _lpParams[i].upperTick,
        _lpParams[i].lowerTick,
        _getBalances(),
        tokenAddresses
      );
      if (liq != 0) {
        _provideLiquidity(_lpParams[i].upperTick, _lpParams[i].lowerTick, liq, _ethVal);
      }

      unchecked {
        ++i;
      }
    }
  }

  /// @notice Computes the liquidity from the given tick ranges and balances
  /// @param sqrtPrice The square root of the current price
  /// @param newUpperTick The new upper tick range
  /// @param newLowerTick The new lower tick range
  /// @param balances The current token balances
  /// @param _tokenAddresses The addresses of the tokens
  /// @return liq The computed liquidity
  /// @return ethVal The value of ETH if the first token address is the zero address
  /// @dev This function calculates the new liquidity amount based on the given tick ranges and balances,
  /// and determines the ETH value if the first token is ETH.
  function _computeLiquidityFromTicks(
    uint128 sqrtPrice,
    int24 newUpperTick,
    int24 newLowerTick,
    uint256[2] memory balances,
    address[2] memory _tokenAddresses
  ) internal view returns (uint128 liq, uint256 ethVal) {
    // Calculate the new liquidity amount using the given tick ranges and balances.
    // If the balance is greater than 4, subtract 4 to avoid rounding issues.
    liq = LiquidityAmountsNative.getLiquidityForAmounts(
      sqrtPrice,
      TickMath.getSqrtRatioAtTick(newLowerTick),
      TickMath.getSqrtRatioAtTick(newUpperTick),
      balances[1] > padding ? balances[1] - padding : 0,
      balances[0] > padding ? balances[0] - padding : 0
    );

    // Determine the value of ETH if the first token address is the zero address (indicating ETH).
    if (_tokenAddresses[0] == address(0)) {
      ethVal = balances[0];
    }
  }

  /// @notice Calculates the liquidity for a given number of shares in a specified tick range
  /// @param _lowerTick The lower tick range
  /// @param _upperTick The upper tick range
  /// @param shares The number of shares
  /// @return The calculated liquidity
  /// @dev This function calculates the liquidity based on the provided shares and tick ranges
  function _liquidityForShares(
    int24 _upperTick,
    int24 _lowerTick,
    uint256 shares,
    address[2] memory _tokenAddresses
  ) internal view returns (uint128) {
    (uint128 position, , ) = _getPosition(_upperTick, _lowerTick, _tokenAddresses);
    return _uint128Safe(uint256(position).mulDiv(shares, totalSupply()));
  }

  /// @notice Safely converts a uint256 to a uint128
  /// @param x The uint256 value to convert
  /// @return The converted uint128 value
  /// @dev This function asserts that the input value can be safely converted to uint128
  function _uint128Safe(uint256 x) internal pure returns (uint128) {
    assert(x <= type(uint128).max);
    return uint128(x);
  }

  /// @notice Burns all liquidities for the given shares and LP parameters
  /// @param _shares The number of shares to burn
  /// @param _lpParams The LP parameters
  /// @param _tokenAddresses The addresses of the tokens
  /// @param isRebalance Indicates if the burn is part of a rebalance operation
  /// @dev This function iterates over all LP parameters and burns the corresponding liquidity
  function _burnAllLiquidities(
    uint256 _shares,
    LpParam[] memory _lpParams,
    address[2] memory _tokenAddresses,
    bool isRebalance
  ) internal {
    // Get the length of the LP parameters array
    uint256 lpParamsLength = _lpParams.length;

    // Iterate over all LP parameters
    for (uint i; i < lpParamsLength; ) {
      uint128 liqShares;

      // Determine the liquidity to burn based on whether this is a rebalance operation
      if (isRebalance) {
        // Get the current position for the specified tick ranges
        (liqShares, , ) = _getPosition(_lpParams[i].upperTick, _lpParams[i].lowerTick, _tokenAddresses);
      } else {
        // Calculate the liquidity for the given shares and tick ranges
        liqShares = _liquidityForShares(_lpParams[i].upperTick, _lpParams[i].lowerTick, _shares, _tokenAddresses);
      }

      // Burn the liquidity for the specified tick ranges
      _burnLiquidity(_lpParams[i].upperTick, _lpParams[i].lowerTick, liqShares, _tokenAddresses);

      unchecked {
        ++i;
      }
    }
  }

  /// @notice Burns liquidity for the given tick ranges and liquidity amount
  /// @param _upperTick The upper tick range
  /// @param _lowerTick The lower tick range
  /// @param liquidity The liquidity amount to burn
  /// @param _tokenAddresses The addresses of the tokens
  /// @dev This function constructs a command for burning liquidity and sends it to the crocsSwapDex contract
  function _burnLiquidity(
    int24 _upperTick,
    int24 _lowerTick,
    uint128 liquidity,
    address[2] memory _tokenAddresses
  ) internal {
    if (liquidity <= 0) return;

    // Encode the command for burning liquidity
    bytes memory cmd = abi.encode(
      2,
      _tokenAddresses[0],
      _tokenAddresses[1],
      420,
      _lowerTick,
      _upperTick,
      (liquidity >> 11) << 11,
      0,
      type(uint128).max,
      0,
      address(0)
    );

    // Send the command to the crocsSwapDex contract
    crocsSwapDex.userCmd(128, cmd);
  }

  /// @notice Withdraws liquidity for the given shares and LP parameters
  /// @param _lpParams The LP parameters
  /// @param _shares The number of shares to withdraw
  /// @param _tokenAddresses The addresses of the tokens
  /// @return totalAmountToSend The total amount of tokens to send
  /// @dev This function burns the corresponding liquidity, swaps tokens if necessary, and returns the total amount to send
  function _withdrawLiquidity(
    LpParam[] memory _lpParams,
    uint256 _shares,
    address[2] memory _tokenAddresses
  ) internal returns (uint256 totalAmountToSend) {
    // Get the current token balances
    uint256[2] memory balBefore = _getBalances();
    (uint256 bal0Before, uint256 bal1Before) = (balBefore[0], balBefore[1]);

    // Calculate the token balances for the given shares
    uint256 token0FromBal = bal0Before.mulDiv(_shares, totalSupply());
    uint256 token1FromBal = bal1Before.mulDiv(_shares, totalSupply());

    // Burn all liquidities for the given shares
    _burnAllLiquidities(_shares, _lpParams, _tokenAddresses, false);

    // Get the new token balances
    uint256[2] memory balAfter = _getBalances();
    (uint256 bal0After, uint256 bal1After) = (balAfter[0], balAfter[1]);

    // Calculate the balances to swap
    uint256 balance0ToSwap = bal0After - bal0Before + token0FromBal;
    uint256 balance1ToSwap = bal1After - bal1Before + token1FromBal;

    // Perform token swaps and calculate the total amount to send
    if (assetIdx == 0) {
      (uint256 receivedAmount, ) = _swapTokens(SwapParams(tokenAddresses[1], tokenAddresses[0], balance1ToSwap));
      totalAmountToSend = receivedAmount + balance0ToSwap;
    } else {
      (uint256 receivedAmount, ) = _swapTokens(SwapParams(tokenAddresses[0], tokenAddresses[1], balance0ToSwap));
      totalAmountToSend = receivedAmount + balance1ToSwap;
    }
  }

  /// @notice Withdraws assets and burns shares
  /// @param caller The address of the caller
  /// @param receiver The address of the receiver
  /// @param owner The address of the owner
  /// @param assets The amount of assets to withdraw
  /// @param shares The number of shares to burn
  /// @param _asset The address of the asset
  /// @dev This function burns the specified shares and transfers the corresponding assets to the receiver
  function _withdraw(
    address caller,
    address receiver,
    address owner,
    uint256 assets,
    uint256 shares,
    address _asset
  ) internal {
    if (caller != owner) {
      _spendAllowance(owner, caller, shares);
    }
    _burn(owner, shares);
    _transferTokenToUser(receiver, _asset, assets);

    emit Withdraw(caller, receiver, owner, assets, shares);
  }

  /// @notice Transfers tokens from the user to the contract
  /// @param token The address of the token
  /// @param amount The amount of the token to transfer
  /// @dev This function transfers the specified amount of tokens from the user to the contract
  function _transferTokenFromUser(address token, uint256 amount) internal {
    if (token == address(0)) {
      if (msg.value != amount) revert WrongMessageValue();
    } else {
      IERC20Metadata(token).safeTransferFrom(msg.sender, address(this), amount);
    }
  }

  /// @notice Transfers tokens from the contract to the user
  /// @param token The address of the token
  /// @param amount The amount of the token to transfer
  /// @dev This function transfers the specified amount of tokens from the contract to the user
  function _transferTokenToUser(address receiver, address token, uint256 amount) internal {
    if (token == address(0)) {
      payable(receiver).transfer(amount);
    } else {
      IERC20Metadata(token).safeTransfer(receiver, amount);
    }
  }

  /// @notice Gets all positions in the pool for the specified LP parameters
  /// @param _lpParams The LP parameters
  /// @param _tokenAddresses The addresses of the tokens
  /// @return liquidity The total liquidity
  /// @return amount0 The total amount of token0
  /// @return amount1 The total amount of token1
  /// @dev This function iterates over all LP parameters and sums up the liquidity, token0 amount, and token1 amount
  function getAllPositions(
    LpParam[] memory _lpParams,
    address[2] memory _tokenAddresses
  ) private view returns (uint128 liquidity, uint128 amount0, uint128 amount1) {
    // Get the length of the LP parameters array
    uint256 lpParamsLength = _lpParams.length;

    // Iterate over all LP parameters
    for (uint i; i < lpParamsLength; ) {
      uint128 curAmount0;
      uint128 curAmount1;
      uint128 curLiquidity;

      // Get the position for the current tick ranges and token addresses
      (curLiquidity, curAmount0, curAmount1) = _getPosition(
        _lpParams[i].upperTick,
        _lpParams[i].lowerTick,
        _tokenAddresses
      );

      // Sum up the liquidity, token0 amount, and token1 amount
      liquidity += curLiquidity;
      amount0 += curAmount0;
      amount1 += curAmount1;

      unchecked {
        ++i;
      }
    }
  }

  function getLpParams() external view returns (LpParam[] memory) {
    return lpParams;
  }

  function getPositions()
    external
    view
    returns (uint256 amount0Invested, uint256 amount1Invested, uint256 amount0Idle, uint256 amount1Idle)
  {
    (, amount0Invested, amount1Invested) = getAllPositions(lpParams, tokenAddresses);
    uint256[2] memory idleAsset = _getBalances();
    amount0Idle = idleAsset[0];
    amount1Idle = idleAsset[1];
  }

  function getTokenAddresses() external view returns (address[2] memory) {
    return tokenAddresses;
  }

  /// @notice Previews the number of shares for a given amount of assets
  /// @param assets The amount of assets
  /// @return The number of shares
  /// @dev This function calculates the number of shares for the specified amount of assets
  function previewDeposit(uint256 assets) public view returns (uint256) {
    return _convertToShares(assets);
  }

  /// @notice Previews the number of shares for a given amount of assets to withdraw
  /// @param assets The amount of assets
  /// @return The number of shares
  /// @dev This function calculates the number of shares for the specified amount of assets to withdraw
  function previewWithdraw(uint256 assets) public view returns (uint256) {
    return _convertToShares(assets);
  }

  /// @notice Converts a given amount to shares
  /// @param amount The amount to convert
  /// @return The number of shares corresponding to the amount
  function convertToShares(uint256 amount) external view returns (uint256) {
    return _convertToShares(amount);
  }

  /// @notice Converts a given number of shares to assets
  /// @param shares The number of shares
  /// @return The amount of assets corresponding to the shares
  function convertToAssets(uint256 shares) external view returns (uint256) {
    return _convertToAssets(shares);
  }

  /// @notice Returns the decimals used for the token
  /// @return The number of decimals
  function decimals() public view override returns (uint8) {
    return _decimals;
  }

  /// @notice Returns the total assets held by the contract
  /// @return The total assets
  function totalAssets() public view returns (uint256) {
    return _underlyingBalance(assetIdx == 0);
  }

  /// @notice Returns the current tick of the pool
  /// @return The current tick
  function currentTick() public view returns (int24) {
    address _token0 = tokenAddresses[0];
    address _token1 = tokenAddresses[1];
    if (_token0 > _token1) {
      (_token0, _token1) = (_token1, _token0);
    }

    bytes32 key = PoolSpecs.encodeKey(_token0, _token1, 420);
    bytes32 slot = keccak256(abi.encode(key, CURVE_MAP_SLOT));
    uint256 valOne = crocsSwapDex.readSlot(uint256(slot));

    uint128 curvePrice = uint128((valOne << 128) >> 128);

    return TickMath.getTickAtSqrtRatio(curvePrice);
  }

  receive() external payable {}

  /// @notice Returns the current balances of token0 and token1
  /// @return The balances of token0 and token1
  function _getBalances() internal view returns (uint256[2] memory) {
    return [
      tokenAddresses[0] == address(0)
        ? address(this).balance
        : IERC20Metadata(tokenAddresses[0]).balanceOf(address(this)),
      IERC20Metadata(tokenAddresses[1]).balanceOf(address(this))
    ];
  }

  /// @notice Converts an amount to shares
  /// @param amount The amount to convert
  /// @return The number of shares
  function _convertToShares(uint256 amount) internal view returns (uint256) {
    uint256 supply = totalSupply();
    if (supply == 0) return amount;
    uint256 _totalAsset = totalAssets();
    if (tokenAddresses[assetIdx] == address(0) && isDepositing) return amount.mulDiv(supply, _totalAsset - amount);
    return amount.mulDiv(supply, _totalAsset);
  }

  /// @notice Converts shares to an amount
  /// @param shares The number of shares to convert
  /// @return The amount corresponding to the shares
  function _convertToAssets(uint256 shares) internal view returns (uint256) {
    uint256 supply = totalSupply();
    if (supply == 0) return shares;
    return shares.mulDiv(totalAssets(), supply);
  }

  /// @notice Returns the underlying balance of token0 or token1
  /// @param _isToken0 Whether to return the balance of token0
  /// @return The underlying balance
  function _underlyingBalance(bool _isToken0) internal view returns (uint256) {
    uint8 token1Decimals = IERC20Metadata(tokenAddresses[1]).decimals();
    uint8 token0Decimals = tokenAddresses[0] == address(0) ? 18 : IERC20Metadata(tokenAddresses[0]).decimals();

    uint256[2] memory tokenBal = _getBalances();
    (uint256 token0Bal, uint256 token1Bal) = (tokenBal[0], tokenBal[1]);

    uint256 token1InToken0 = (uint256(IOracle(oracle).latestAnswer()) * 10 ** token0Decimals) /
      (10 ** IOracle(oracle).decimals());
    (, uint128 amount0, uint128 amount1) = getAllPositions(lpParams, tokenAddresses);

    uint256 curValBal = _isToken0 ? token1Bal : token0Bal;
    uint256 amount = _isToken0
      ? token1InToken0.mulDiv((uint256(amount1) + curValBal), 10 ** token1Decimals)
      : (uint256(amount0) + curValBal).mulDiv(10 ** token1Decimals, token1InToken0);
    uint256 curUnderlyingBal = _isToken0 ? token0Bal : token1Bal;
    return _isToken0 ? uint256(amount0) + amount + curUnderlyingBal : uint256(amount1) + amount + curUnderlyingBal;
  }

  /// @notice Checks if the received amount is acceptable
  /// @param initialAmount The initial amount
  /// @param currentUnderlyingAmount The current underlying amount
  /// @param receivedAmount The received amount
  /// @param _isToken0 Whether the token is token0
  /// @param _oracle oracle
  /// @dev This function reverts if the received amount is less than the acceptable amount
  function _checkReceivedAmount(
    uint256 initialAmount,
    uint256 currentUnderlyingAmount,
    uint256 receivedAmount,
    bool _isToken0,
    address _oracle
  ) internal view {
    uint8 decimalToken1 = IERC20Metadata(tokenAddresses[1]).decimals();
    uint8 token0Decimals = tokenAddresses[0] == address(0) ? 18 : IERC20Metadata(tokenAddresses[0]).decimals();

    uint256 amountInOtherToken;
    uint256 oraclePrice = (uint256(IOracle(_oracle).latestAnswer()) * 10 ** token0Decimals) /
      (10 ** IERC20Metadata(_oracle).decimals());
    if (_isToken0) {
      // received is token1
      amountInOtherToken = (receivedAmount * oraclePrice) / 10 ** decimalToken1;
    } else {
      amountInOtherToken = receivedAmount.mulDiv(10 ** decimalToken1, oraclePrice);
    }

    uint256 acceptableAmount = initialAmount.mulDiv(swapSlippage, BASE);

    if (currentUnderlyingAmount + amountInOtherToken < acceptableAmount) revert NotEnoughReceived();
  }

  ///////////////
  /// Setters ///
  ///////////////

  /// @notice Sets the fee
  /// @param _fee The new fee
  /// @dev This function sets the fee and emits a FeesSet event
  function setFees(uint16 _fee) external onlyRole(GOVERNANCE_ROLE) {
    if (_fee > BASE) {
      revert BadSetup();
    }
    fee = _fee;
    emit FeesSet(_fee);
  }

  /// @notice Sets the fee recipient
  /// @param _feeRecipient The new fee recipient
  /// @dev This function sets the fee recipient and emits a FeeRecipientSet event
  function setFeeRecipient(address _feeRecipient) external onlyRole(GOVERNANCE_ROLE) {
    if (_feeRecipient == address(0)) {
      revert BadSetup();
    }
    feeRecipient = _feeRecipient;
    emit FeeRecipientSet(_feeRecipient);
  }

  /// @notice Sets the invested percentage
  /// @param _investedPercentage The new invested percentage
  /// @dev This function sets the invested percentage and emits an InvestedPercentageSet event
  function setInvestedPercentage(uint16 _investedPercentage) external onlyRole(GOVERNANCE_ROLE) {
    if (_investedPercentage > BASE) {
      revert BadSetup();
    }
    investedPercentage = _investedPercentage;
    emit InvestedPercentageSet(_investedPercentage);
  }

  /// @notice Sets the swap slippage
  /// @param _swapSlippage The new swap slippage
  /// @dev This function sets the swap slippage and emits a SwapSlippageSet event
  function setSwapSlippage(uint16 _swapSlippage) external onlyRole(GOVERNANCE_ROLE) {
    if (_swapSlippage > BASE) {
      revert BadSetup();
    }
    swapSlippage = _swapSlippage;
    emit SwapSlippageSet(_swapSlippage);
  }

  function setOracle(address _oracle) external onlyRole(GOVERNANCE_ROLE) {
    if (_oracle == address(0)) {
      revert BadSetup();
    }
    oracle = _oracle;
    emit OracleSet(_oracle);
  }

  /**
   * @notice Sets the padding value.
   * @param _padding The new padding value to be set.
   * @dev This function can only be called by an account with the GOVERNANCE_ROLE.
   * @dev Emits a PaddingSet event with the new padding value.
   */
  function setPadding(uint8 _padding) external onlyRole(GOVERNANCE_ROLE) {
    padding = _padding;
    emit PaddingSet(_padding);
  }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

interface CrocsSwapDex {
  function userCmd(uint16 callpath, bytes calldata cmd) external payable returns (bytes memory);

  function readSlot(uint256 slot) external view returns (uint256 data);

  function swap(
    address base,
    address quote,
    uint256 poolIdx,
    bool isBuy,
    bool inBaseQty,
    uint128 qty,
    uint16 tip,
    uint128 limitPrice,
    uint128 minOut,
    uint8 settleFlags
  ) external payable returns (int128 baseFlow, int128 quoteFlow);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.23;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.64 numbers. Supports
/// prices between 2**-96 and 2**120
library TickMath {
  /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-96
  int24 internal constant MIN_TICK = -665_454;
  /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**120
  int24 internal constant MAX_TICK = 831_818;

  /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to
  /// getSqrtRatioAtTick(MIN_TICK). The reason we don't set this as min(uint128) is so that single precicion moves
  /// represent a small fraction.
  uint128 internal constant MIN_SQRT_RATIO = 65_538;
  /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
  uint128 internal constant MAX_SQRT_RATIO = 21_267_430_153_580_247_136_652_501_917_186_561_138;

  /// @notice Calculates sqrt(1.0001^tick) * 2^64
  /// @dev Throws if tick < MIN_TICK or tick > MAX_TICK
  /// @param tick The input tick for the above formula
  /// @return sqrtPriceX64 A Fixed point Q64.64 number representing the sqrt of the ratio of the two assets
  /// (token1/token0)
  /// at the given tick
  function getSqrtRatioAtTick(int24 tick) internal pure returns (uint128 sqrtPriceX64) {
    // Set to unchecked, but the original UniV3 library was written in a pre-checked version of Solidity
    unchecked {
      require(tick >= MIN_TICK && tick <= MAX_TICK);
      uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));

      uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
      if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
      if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
      if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
      if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
      if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
      if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
      if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
      if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
      if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
      if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
      if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
      if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
      if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
      if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
      if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
      if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
      if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
      if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
      if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

      if (tick > 0) ratio = type(uint256).max / ratio;

      // this divides by 1<<64 rounding up to go from a Q128.128 to a Q64.64
      // we then downcast because we know the result always fits within 128 bits due to our tick input constraint
      // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
      sqrtPriceX64 = uint128((ratio >> 64) + (ratio % (1 << 64) == 0 ? 0 : 1));
    }
  }

  /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
  /// @dev Throws in case sqrtPriceX64 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
  /// ever return.
  /// @param sqrtPriceX64 The sqrt ratio for which to compute the tick as a Q64.64
  /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
  function getTickAtSqrtRatio(uint128 sqrtPriceX64) internal pure returns (int24 tick) {
    // Set to unchecked, but the original UniV3 library was written in a pre-checked version of Solidity
    unchecked {
      // second inequality must be < because the price can never reach the price at the max tick
      require(sqrtPriceX64 >= MIN_SQRT_RATIO && sqrtPriceX64 < MAX_SQRT_RATIO);
      uint256 ratio = uint256(sqrtPriceX64) << 64;

      uint256 r = ratio;
      uint256 msb = 0;

      assembly {
        let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(5, gt(r, 0xFFFFFFFF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(4, gt(r, 0xFFFF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(3, gt(r, 0xFF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(2, gt(r, 0xF))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := shl(1, gt(r, 0x3))
        msb := or(msb, f)
        r := shr(f, r)
      }
      assembly {
        let f := gt(r, 0x1)
        msb := or(msb, f)
      }

      if (msb >= 128) r = ratio >> (msb - 127);
      else r = ratio << (127 - msb);

      int256 log_2 = (int256(msb) - 128) << 64;

      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(63, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(62, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(61, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(60, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(59, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(58, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(57, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(56, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(55, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(54, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(53, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(52, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(51, f))
        r := shr(f, r)
      }
      assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(50, f))
      }

      int256 log_sqrt10001 = log_2 * 255_738_958_999_603_826_347_141; // 128.128 number

      int24 tickLow = int24((log_sqrt10001 - 3_402_992_956_809_132_418_596_140_100_660_247_210) >> 128);
      int24 tickHi = int24((log_sqrt10001 + 291_339_464_771_989_622_907_027_621_153_398_088_495) >> 128);

      tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX64 ? tickHi : tickLow;
    }
  }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

struct CurveState {
  uint128 priceRoot_;
  uint128 ambientSeeds_;
  uint128 concLiq_;
  uint64 seedDeflator_;
  uint64 concGrowth_;
}

interface CrocsQuery {
  struct Pool {
    uint8 schema_;
    uint16 feeRate_;
    uint8 protocolTake_;
    uint16 tickSize_;
    uint8 jitThresh_;
    uint8 knockoutBits_;
    uint8 oracleFlags_;
  }

  function queryCurveTick(address base, address quote, uint256 poolIdx) external view returns (int24);

  function queryKnockoutTokens(
    address owner,
    address base,
    address quote,
    uint256 poolIdx,
    uint32 pivot,
    bool isBid,
    int24 lowerTick,
    int24 upperTick
  ) external view returns (uint128 liq, uint128 baseQty, uint128 quoteQty, bool knockedOut);

  function queryKnockoutPivot(
    address base,
    address quote,
    uint256 poolIdx,
    bool isBid,
    int24 tick
  ) external view returns (uint96 lots, uint32 pivot, uint16 range);

  function queryRangeTokens(
    address owner,
    address base,
    address quote,
    uint256 poolIdx,
    int24 lowerTick,
    int24 upperTick
  ) external view returns (uint128, uint128, uint128);

  function queryPoolParams(address base, address quote, uint256 poolIdx) external view returns (Pool memory pool);

  function queryCurve(address base, address quote, uint256 poolIdx) external view returns (CurveState memory curve);
}

// SPDX-License-Identifier: GPL-3

pragma solidity >=0.8.23;
pragma experimental ABIEncoderV2;

/* @title Pool specification library.
 * @notice Library for defining, querying, and encoding the specifications of the
 *         parameters of a pool type. */
library PoolSpecs {
  /* @notice Specifcations of the parameters of a single pool type. Any given pair
   *         may have many different pool types, each of which may operate as segmented
   *         markets with different underlying behavior to the AMM.
   *
   * @param schema_ Placeholder that defines the structure of the poolSpecs object in
   *                in storage. Because slots initialize zero, 0 is used for an
   *                unitialized or disabled pool. 1 is the only currently used schema
   *                (for the below struct), but allows for upgradeability in the future
   *
   * @param feeRate_ The overall fee (liquidity fees + protocol fees inclusive) that
   *            swappers pay to the pool as a fraction of notional. Represented as an
   *            integer representing hundredths of a basis point. I.e. a 0.25% fee
   *            would be 2500
   *
   * @param protocolTake_ The fraction of the fee rate that goes to the protocol fee
   *             (the rest accumulates as a liquidity fee to LPs). Represented in units
   *             of 1/256. Since uint8 can represent up to 255, protocol could take
   *             as much as 99.6% of liquidity fees. However currently the protocol
   *             set function prohibits values above 128, i.e. 50% of liquidity fees.
   *             (See set ProtocolTakeRate in PoolRegistry.sol)
   *
   * @param tickSize The minimum granularity of price ticks defining a grid, on which
   *          range orders may be placed. (Outside off-grid price improvement facility.)
   *          For example a value of 50 would mean that range order bounds could only
   *          be placed on every 50th price tick, guaranteeing a minimum separation of
   *          0.005% (50 one basis point ticks) between bump points.
   *
   * @param jitThresh_ Sets the minimum TTL for concentrated LP positions in the pool.
   *                   Represented in units of 10 seconds (as measured by block time)
   *                   E.g. a value of 5 equates to a minimum TTL of 50 seconds.
   *                   Attempts to burn or partially burn an LP position in less than
   *                   N seconds (as measured in block.timestamp) after a position was
   *                   minted (or had its liquidity increased) will revert. If set to
   *                   0, atomically flashed liquidity that mints->burns in the same
   *                   block is enabled.
   *
   * @param knockoutBits_ Defines the parameters for where and how knockout liquidity
   *                      is allowed in the pool. (See KnockoutLiq library for a full
   *                      description of the bit field.)
   *
   * @param oracleFlags_ Bitmap flags to indicate the pool's oracle permission
   *                     requirements. Current implementation only uses the least
   *                     significant bit, which if on checks oracle permission on every
   *                     pool related call. Otherwise pool is permissionless. */
  struct Pool {
    uint8 schema_;
    uint16 feeRate_;
    uint8 protocolTake_;
    uint16 tickSize_;
    uint8 jitThresh_;
    uint8 knockoutBits_;
    uint8 oracleFlags_;
  }

  uint8 constant BASE_SCHEMA = 1;
  uint8 constant DISABLED_SCHEMA = 0;

  /* @notice Convenience struct that's used to gather all useful context about on a
   *         specific pool.
   * @param head_ The full specification for the pool. (See struct Pool comments above.)
   * @param hash_ The keccak256 hash used to encode the full pool location.
   * @param oracle_ The permission oracle associated with this pool (0 if pool is
   *                permissionless.) */
  struct PoolCursor {
    Pool head_;
    bytes32 hash_;
    address oracle_;
  }

  /* @notice Given a mapping of pools, a base/quote token pair and a pool type index,
   *         copies the pool specification to memory. */
  function queryPool(
    mapping(bytes32 => Pool) storage pools,
    address tokenX,
    address tokenY,
    uint256 poolIdx
  ) internal view returns (PoolCursor memory specs) {
    bytes32 key = encodeKey(tokenX, tokenY, poolIdx);
    Pool memory pool = pools[key];
    address oracle = oracleForPool(poolIdx, pool.oracleFlags_);
    return PoolCursor({ head_: pool, hash_: key, oracle_: oracle });
  }

  /* @notice Given a mapping of pools, a base/quote token pair and a pool type index,
   *         retrieves a storage reference to the pool specification. */
  function selectPool(
    mapping(bytes32 => Pool) storage pools,
    address tokenX,
    address tokenY,
    uint256 poolIdx
  ) internal view returns (Pool storage specs) {
    bytes32 key = encodeKey(tokenX, tokenY, poolIdx);
    return pools[key];
  }

  /* @notice Writes a pool specification for a pair and pool type combination. */
  function writePool(
    mapping(bytes32 => Pool) storage pools,
    address tokenX,
    address tokenY,
    uint256 poolIdx,
    Pool memory val
  ) internal {
    bytes32 key = encodeKey(tokenX, tokenY, poolIdx);
    pools[key] = val;
  }

  /* @notice Hashes the key associated with a pool for a base/quote asset pair and
   *         a specific pool type index. */
  function encodeKey(address tokenX, address tokenY, uint256 poolIdx) internal pure returns (bytes32) {
    require(tokenX < tokenY);
    return keccak256(abi.encode(tokenX, tokenY, poolIdx));
  }

  /* @notice Returns the permission oracle associated with the pool (or 0 if pool is
   *         permissionless.
   *
   * @dev    The oracle (if enabled on pool settings) is always deterministically based
   *         on the first 160-bits of the pool type value. This means users can know
   *         ahead of time if a pool can be oracled by checking the bits in the pool
   *         index. */
  function oracleForPool(uint256 poolIdx, uint8 oracleFlags) internal pure returns (address) {
    uint8 ORACLE_ENABLED_MASK = 0x1;
    bool oracleEnabled = (oracleFlags & ORACLE_ENABLED_MASK == 1);
    return oracleEnabled ? address(uint160(poolIdx >> 96)) : address(0);
  }

  /* @notice Constructs a cryptographically unique virtual address based off a base
   *         address (either virtual or real), and a salt unique to the base address.
   *         Can be used to create synthetic tokens, users, etc.
   *
   * @param base The address of the base root.
   * @param salt A salt unique to the base token tracker contract.
   *
   * @return A synthetic token address corresponding to the specific virtual address. */
  function virtualizeAddress(address base, uint256 salt) internal pure returns (address) {
    bytes32 hash = keccak256(abi.encode(base, salt));
    uint160 hashTrail = uint160((uint256(hash) << 96) >> 96);
    return address(hashTrail);
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: GPL-3

pragma solidity >=0.8.23;

/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
  /// @notice Cast a uint256 to a uint160, revert on overflow
  /// @param y The uint256 to be downcasted
  /// @return z The downcasted integer, now type uint160
  function toUint160(uint256 y) internal pure returns (uint160 z) {
    unchecked {
      // Explicit bounds check
      require((z = uint160(y)) == y);
    }
  }

  /// @notice Cast a uint256 to a uint128, revert on overflow
  /// @param y The uint256 to be downcasted
  /// @return z The downcasted integer, now type uint128
  function toUint128(uint256 y) internal pure returns (uint128 z) {
    unchecked {
      // Explicit bounds check
      require((z = uint128(y)) == y);
    }
  }

  /// @notice Cast a uint192 to a uint128, revert on overflow
  /// @param y The uint192 to be downcasted
  /// @return z The downcasted integer, now type uint128
  function toUint128By192(uint192 y) internal pure returns (uint128 z) {
    unchecked {
      // Explicit bounds check
      require((z = uint128(y)) == y);
    }
  }

  /// @notice Cast a uint144 to a uint128, revert on overflow
  /// @param y The uint144 to be downcasted
  /// @return z The downcasted integer, now type uint128
  function toUint128By144(uint144 y) internal pure returns (uint128 z) {
    unchecked {
      // Explicit bounds check
      require((z = uint128(y)) == y);
    }
  }

  /// @notice Cast a uint128 to a int128, revert on overflow
  /// @param y The uint128 to be casted
  /// @return z The casted integer, now type int128
  function toInt128Sign(uint128 y) internal pure returns (int128 z) {
    unchecked {
      // Explicit bounds check
      require(y < 2 ** 127);
      return int128(y);
    }
  }

  // Unix timestamp can fit into 32-bits until the year 2106. After which, internally
  // stored timestamps will stop increasing. Deployed contracts relying on this function
  // should be re-evaluated before that date.
  function timeUint32() internal view returns (uint32) {
    unchecked {
      // Explicit bounds check
      uint256 time = block.timestamp;
      if (time > type(uint32).max) return type(uint32).max;
      return uint32(time);
    }
  }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import "./LiquidityAmountsNative.sol";

/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
/// @dev Note For exact bytecode compatibiility this library uses Uniswap V3 X64.96 price
///           format even though CrocSwap uses X64.64 prices. To use X64.64 prices use the
///           LiquidityAmountsNative library instead.
library LiquidityAmounts {
  /// @notice Downcasts uint256 to uint128
  /// @param x The uint258 to be downcasted
  /// @return y The passed value, downcasted to uint128
  function toUint128(uint256 x) private pure returns (uint128 y) {
    require((y = uint128(x)) == x);
  }

  function convertPriceToX64(uint160 sqrtRatioX96) private pure returns (uint128) {
    return uint128(sqrtRatioX96 >> 32);
  }

  /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
  /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount0 The amount0 being sent in
  /// @return liquidity The amount of returned liquidity
  function getLiquidityForAmount0(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount0
  ) internal pure returns (uint128 liquidity) {
    return LiquidityAmountsNative.getLiquidityForAmount0(sqrtRatioAX64, sqrtRatioBX64, amount0);
  }

  /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
  /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount1 The amount1 being sent in
  /// @return liquidity The amount of returned liquidity
  function getLiquidityForAmount1(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount1
  ) internal pure returns (uint128 liquidity) {
    return LiquidityAmountsNative.getLiquidityForAmount1(sqrtRatioAX64, sqrtRatioBX64, amount1);
  }

  /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
  /// pool prices and the prices at the tick boundaries
  /// @param sqrtRatioX64 A sqrt price representing the current pool prices
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount0 The amount of token0 being sent in
  /// @param amount1 The amount of token1 being sent in
  /// @return liquidity The maximum amount of liquidity received
  function getLiquidityForAmounts(
    uint128 sqrtRatioX64,
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount0,
    uint256 amount1
  ) internal pure returns (uint128 liquidity) {
    if (sqrtRatioAX64 > sqrtRatioBX64) (sqrtRatioAX64, sqrtRatioBX64) = (sqrtRatioBX64, sqrtRatioAX64);

    if (sqrtRatioX64 <= sqrtRatioAX64) {
      liquidity = getLiquidityForAmount0(sqrtRatioAX64, sqrtRatioBX64, amount0);
    } else if (sqrtRatioX64 < sqrtRatioBX64) {
      uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX64, sqrtRatioBX64, amount0);
      uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX64, sqrtRatioX64, amount1);

      liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
    } else {
      liquidity = getLiquidityForAmount1(sqrtRatioAX64, sqrtRatioBX64, amount1);
    }
  }

  /// @notice Computes the amount of token0 for a given amount of liquidity and a price range
  /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount0 The amount of token0
  function getAmount0ForLiquidity(
    uint160 sqrtRatioAX96,
    uint160 sqrtRatioBX96,
    uint128 liquidity
  ) internal pure returns (uint256 amount0) {
    return
      LiquidityAmountsNative.getAmount0ForLiquidity(
        convertPriceToX64(sqrtRatioAX96),
        convertPriceToX64(sqrtRatioBX96),
        liquidity
      );
  }

  /// @notice Computes the amount of token1 for a given amount of liquidity and a price range
  /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount1 The amount of token1
  function getAmount1ForLiquidity(
    uint160 sqrtRatioAX96,
    uint160 sqrtRatioBX96,
    uint128 liquidity
  ) internal pure returns (uint256 amount1) {
    return
      LiquidityAmountsNative.getAmount1ForLiquidity(
        convertPriceToX64(sqrtRatioAX96),
        convertPriceToX64(sqrtRatioBX96),
        liquidity
      );
  }

  /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
  /// pool prices and the prices at the tick boundaries
  /// @param sqrtRatioX96 A sqrt price representing the current pool prices
  /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount0 The amount of token0
  /// @return amount1 The amount of token1
  function getAmountsForLiquidity(
    uint160 sqrtRatioX96,
    uint160 sqrtRatioAX96,
    uint160 sqrtRatioBX96,
    uint128 liquidity
  ) internal pure returns (uint256 amount0, uint256 amount1) {
    if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

    if (sqrtRatioX96 <= sqrtRatioAX96) {
      amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
    } else if (sqrtRatioX96 < sqrtRatioBX96) {
      amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity);
      amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity);
    } else {
      amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
    }
  }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import "src/libraries/FixedPoint.sol";
import "src/libraries/CurveMath.sol";
import "src/libraries/LiquidityMath.sol";

/// @title Liquidity amount functions
/// @notice Same as LiquidityAmounts.sol library but uses CrocSwap native X64.64 prices instead
///         of Uniswap X64.96 price format
library LiquidityAmountsNative {
  /// @notice Downcasts uint256 to uint128
  /// @param x The uint258 to be downcasted
  /// @return y The passed value, downcasted to uint128
  function toUint128(uint256 x) private pure returns (uint128 y) {
    require((y = uint128(x)) == x);
  }

  /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
  /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount0 The amount0 being sent in
  /// @return liquidity The amount of returned liquidity
  function getLiquidityForAmount0(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount0
  ) internal pure returns (uint128 liquidity) {
    return
      LiquidityMath.shaveRoundLots(
        CurveMath.liquiditySupported(toUint128(amount0), false, sqrtRatioAX64, sqrtRatioBX64)
      );
  }

  /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
  /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount1 The amount1 being sent in
  /// @return liquidity The amount of returned liquidity
  function getLiquidityForAmount1(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount1
  ) internal pure returns (uint128 liquidity) {
    return
      LiquidityMath.shaveRoundLots(
        CurveMath.liquiditySupported(toUint128(amount1), true, sqrtRatioAX64, sqrtRatioBX64)
      );
  }

  /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
  /// pool prices and the prices at the tick boundaries
  /// @param sqrtRatioX64 A sqrt price representing the current pool prices
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param amount0 The amount of token0 being sent in
  /// @param amount1 The amount of token1 being sent in
  /// @return liquidity The maximum amount of liquidity received
  function getLiquidityForAmounts(
    uint128 sqrtRatioX64,
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint256 amount0,
    uint256 amount1
  ) internal pure returns (uint128 liquidity) {
    if (sqrtRatioAX64 > sqrtRatioBX64) (sqrtRatioAX64, sqrtRatioBX64) = (sqrtRatioBX64, sqrtRatioAX64);

    if (sqrtRatioX64 <= sqrtRatioAX64) {
      liquidity = getLiquidityForAmount0(sqrtRatioAX64, sqrtRatioBX64, amount0);
    } else if (sqrtRatioX64 < sqrtRatioBX64) {
      uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX64, sqrtRatioBX64, amount0);
      uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX64, sqrtRatioX64, amount1);

      liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
    } else {
      liquidity = getLiquidityForAmount1(sqrtRatioAX64, sqrtRatioBX64, amount1);
    }
  }

  /// @notice Computes the amount of token0 for a given amount of liquidity and a price range
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount0 The amount of token0
  function getAmount0ForLiquidity(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint128 liquidity
  ) internal pure returns (uint256 amount0) {
    return CurveMath.deltaQuote(liquidity, sqrtRatioAX64, sqrtRatioBX64);
  }

  /// @notice Computes the amount of token1 for a given amount of liquidity and a price range
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount1 The amount of token1
  function getAmount1ForLiquidity(
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint128 liquidity
  ) internal pure returns (uint256 amount1) {
    return CurveMath.deltaBase(liquidity, sqrtRatioAX64, sqrtRatioBX64);
  }

  /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
  /// pool prices and the prices at the tick boundaries
  /// @param sqrtRatioX64 A sqrt price representing the current pool prices
  /// @param sqrtRatioAX64 A sqrt price representing the first tick boundary
  /// @param sqrtRatioBX64 A sqrt price representing the second tick boundary
  /// @param liquidity The liquidity being valued
  /// @return amount0 The amount of token0
  /// @return amount1 The amount of token1
  function getAmountsForLiquidity(
    uint128 sqrtRatioX64,
    uint128 sqrtRatioAX64,
    uint128 sqrtRatioBX64,
    uint128 liquidity
  ) internal pure returns (uint256 amount0, uint256 amount1) {
    if (sqrtRatioAX64 > sqrtRatioBX64) (sqrtRatioAX64, sqrtRatioBX64) = (sqrtRatioBX64, sqrtRatioAX64);

    if (sqrtRatioX64 <= sqrtRatioAX64) {
      amount0 = getAmount0ForLiquidity(sqrtRatioAX64, sqrtRatioBX64, liquidity);
    } else if (sqrtRatioX64 < sqrtRatioBX64) {
      amount0 = getAmount0ForLiquidity(sqrtRatioX64, sqrtRatioBX64, liquidity);
      amount1 = getAmount1ForLiquidity(sqrtRatioAX64, sqrtRatioX64, liquidity);
    } else {
      amount1 = getAmount1ForLiquidity(sqrtRatioAX64, sqrtRatioBX64, liquidity);
    }
  }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

interface IOracle {
  function latestAnswer() external view returns (int256);

  function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        /// @solidity memory-safe-assembly
        assembly {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: GPL-3

pragma solidity >=0.8.23;

/// @title FixedPoint128
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
library FixedPoint {
  uint256 internal constant Q128 = 0x100000000000000000000000000000000;
  uint256 internal constant Q96 = 0x1000000000000000000000000;
  uint256 internal constant Q64 = 0x10000000000000000;
  uint256 internal constant Q48 = 0x1000000000000;
  uint8 internal constant RESOLUTION = 64;

  /* @notice Multiplies two Q64.64 numbers by each other. */
  function mulQ64(uint128 x, uint128 y) internal pure returns (uint192) {
    unchecked {
      // 128 bit integers squared will always fit in 256-bits
      return uint192((uint256(x) * uint256(y)) >> 64);
    }
  }

  /* @notice Divides one Q64.64 number by another. */
  function divQ64(uint128 x, uint128 y) internal pure returns (uint192) {
    unchecked {
      // No overflow or underflow possible in the below operations
      return (uint192(x) << 64) / y;
    }
  }

  /* @notice Multiplies a Q64.64 by a Q16.48. */
  function mulQ48(uint128 x, uint64 y) internal pure returns (uint144) {
    unchecked {
      // 128 bit integers squared will always fit in 256-bits
      return uint144((uint256(x) * uint256(y)) >> 48);
    }
  }

  /* @notice Takes the reciprocal of a Q64.64 number. */
  function recipQ64(uint128 x) internal pure returns (uint128) {
    unchecked {
      // Only possible overflow possible is captured with a specific check
      uint256 div = uint256(FixedPoint.Q128) / uint256(x);
      require(div <= type(uint128).max);
      return uint128(div);
    }
  }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.23;

import "src/utils/Errors.sol";
import "src/utils/Variables.sol";
import "src/utils/Constants.sol";
import "src/libraries/TickMath.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { SafeCast } from "./SafeCast.sol";

struct TickParameters {
  uint256 oraclePrice;
  int24 baseWidth;
  int24 limitWidth;
  int24 tickSize;
  uint8 token1Decimals;
  int24 currentTick;
  bool isLimitRight;
}

library VaultLibrary {
  function _checkTicks(int24 _upperTick, int24 _lowerTick, int24 tickSize) internal pure {
    if (_upperTick < _lowerTick || _upperTick % tickSize != 0 || _lowerTick % tickSize != 0) {
      revert BadRange();
    }
  }

  function checkLiqParams(int24[] memory _upperTicks, int24[] memory _lowerTicks, int24 tickSize) internal pure {
    uint256 lenTicks = _upperTicks.length;
    if (lenTicks != _lowerTicks.length) revert BadSetup();
    for (uint i; i < lenTicks; ) {
      _checkTicks(_upperTicks[i], _lowerTicks[i], tickSize);
      unchecked {
        ++i;
      }
    }
  }

  function checkWeights(uint16[] memory _lpWeights) internal pure {
    uint16 cumWeight;
    uint256 lenWeights = _lpWeights.length;
    for (uint i; i < lenWeights; ) {
      cumWeight += _lpWeights[i];
      unchecked {
        ++i;
      }
    }
    if (cumWeight != BASE) revert BadSetup();
  }

  function setTicks(
    TickParameters memory params
  ) external pure returns (int24[] memory newUpperTicks, int24[] memory newLowerTicks) {
    newUpperTicks = new int24[](2);
    newLowerTicks = new int24[](2);

    newUpperTicks[0] =
      ((TickMath.getTickAtSqrtRatio(
        SafeCast.toUint128(Math.sqrt((params.oraclePrice << 128) / (10 ** params.token1Decimals)))
      ) + params.baseWidth) / params.tickSize) *
      params.tickSize;

    newLowerTicks[0] =
      ((TickMath.getTickAtSqrtRatio(
        SafeCast.toUint128(Math.sqrt((params.oraclePrice << 128) / (10 ** params.token1Decimals)))
      ) - params.baseWidth) / params.tickSize) *
      params.tickSize;

    if (params.isLimitRight) {
      newUpperTicks[1] =
        ((TickMath.getTickAtSqrtRatio(
          SafeCast.toUint128(Math.sqrt((params.oraclePrice << 128) / (10 ** params.token1Decimals)))
        ) + params.limitWidth) / params.tickSize) *
        params.tickSize;
      newLowerTicks[1] = (params.currentTick / params.tickSize) * params.tickSize + params.tickSize;
    } else {
      newUpperTicks[1] = (params.currentTick / params.tickSize) * params.tickSize - params.tickSize;
      newLowerTicks[1] =
        ((TickMath.getTickAtSqrtRatio(
          SafeCast.toUint128(Math.sqrt((params.oraclePrice << 128) / (10 ** params.token1Decimals)))
        ) - params.limitWidth) / params.tickSize) *
        params.tickSize;
    }

    return (newUpperTicks, newLowerTicks);
  }
}

File 18 of 36 : Constants.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

uint16 constant BASE = 10_000;
uint256 constant CURVE_MAP_SLOT = 65_551;

File 19 of 36 : Variables.sol
// SPDX-License-Identifier: UNLICENSED

pragma solidity >=0.8.23;

struct StrategyParameters {
  string name;
  string symbol;
  uint8 assetIdx;
  uint8 baseLPIdx;
  uint16 fee;
  uint16 investedPercentage;
  uint16 swapSlippage;
  address feeRecipient;
  address token0;
  address token1;
  address governor;
  address cQuery;
  address cSwapDex;
}

struct SymetricStrategyParameters {
  string name;
  string symbol;
  uint8 assetIdx;
  uint16 fee;
  uint16 investedPercentage;
  uint16 swapSlippage;
  address feeRecipient;
  address token0;
  address token1;
  address governor;
  address cQuery;
  address cSwapDex;
  address oracle;
}

struct LstParameters {
  string name;
  string symbol;
  uint8 assetIdx;
  uint16 fee;
  uint16 investedPercentage;
  address feeRecipient;
  address token0;
  address token1;
  address governor;
  address cQuery;
  address cSwapDex;
  address oracle;
  address unWrappedToken;
  address withdrawalQueue;
}

struct LpParam {
  int24 upperTick;
  int24 lowerTick;
}

struct LstParam {
  int24 upperTick;
  int24 lowerTick;
  uint32 pivot;
}

struct WithdrawalData {
  uint256 requestId;
  uint256 amount;
}

File 20 of 36 : Errors.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.23;

error NotEnoughToken();
error WrongMessageValue();
error NotEnoughReceived();
error BadSetup();
error BadRange();
error HighSlippage();
error MinAmount();
error WithdrawExceedsMax();
error LpAlreadyExists();
error NotEnoughLiquidFund();

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: GPL-3

pragma solidity 0.8.23;
pragma experimental ABIEncoderV2;

import "./SafeCast.sol";
import "./FixedPoint.sol";
import "./LiquidityMath.sol";
import "./CompoundMath.sol";

/* @title Curve and swap math library
 * @notice Library that defines locally stable constant liquidity curves and
 *         swap struct, as well as functions to derive impact and aggregate
 *         liquidity measures on these objects. */
library CurveMath {
  using LiquidityMath for uint128;
  using CompoundMath for uint256;
  using SafeCast for uint256;
  using SafeCast for uint192;

  /* All CrocSwap swaps occur as legs across locally stable constant-product AMM
   * curves. For large moves across tick boundaries, the state of this curve might
   * change as range-bound liquidity is kicked in or out of the currently active
   * curve. But for small moves within tick boundaries (or between tick boundaries
   * with no liquidity bumps), the curve behaves like a classic constant-product AMM.
   *
   * CrocSwap tracks two types of liquidity. 1) Ambient liquidity that is non-
   * range bound and remains active at all prices from zero to infinity, until
   * removed by the staking user. 2) Concentrated liquidity that is tied to an
   * arbitrary lower<->upper tick range and is kicked out of the curve when the
   * price moves out of range.
   *
   * In the CrocSwap model all collected fees are directly incorporated as expanded
   * liquidity onto the curve itself. (See CurveAssimilate.sol for more on the
   * mechanics.) All accumulated fees are added as ambient-type liquidity, even those
   * fees that belong to the pro-rata share of the active concentrated liquidity.
   * This is because on an aggregate level, we can't break down the pro-rata share
   * of concentrated rewards to the potentially near infinite concentrated range
   * possibilities.
   *
   * Because of this concentrated liquidity can be flatly represented as 1:1 with
   * contributed liquidity. Ambient liquidity, in contrast, deflates over time as
   * it accumulates rewards. Therefore it's represented in terms of seed amount,
   * i.e. the equivalent of 1 unit of ambient liquidity contributed at the inception
   * of the pool. As fees accumulate the conversion rate from seed to liquidity
   * continues to increase.
   *
   * Finally concentrated liquidity rewards are represented in terms of accumulated
   * ambient seeds. This automatically takes care of the compounding of ambient
   * rewards compounded on top of concentrated rewards.
   *
   * @param priceRoot_ The square root of the price ratio exchange rate between the
   *   base and quote-side tokens in the AMM curve. (represented in Q64.64 fixed point)
   * @param ambientSeeds_ The total ambient liquidity seeds in the current curve.
   *   (Inflated by seed deflator to get efective ambient liquidity)
   * @param concLiq_ The total concentrated liquidity active and in range at the
   *   current state of the curve.
   * @param seedDeflator_ The cumulative growth rate (represented as Q16.48 fixed
   *    point) of a hypothetical 1-unit of ambient liquidity held in the pool since
   *    inception.
   * @param concGrowth_ The cumulative rewards growth rate (represented as Q16.48
   *   fixed point) of hypothetical 1 unit of concentrated liquidity in range in the
   *   pool since inception.
   *
   * @dev Price ratio is stored as a square root because it makes reserve calculation
   *      arithmetic much easier. To be conservative with collateral these growth
   *      rates should always be rounded down from their real-value results. Some
   *      minor lower-bound approximation is fine, since all it will result in is
   *      slightly smaller reward payouts. */
  struct CurveState {
    uint128 priceRoot_;
    uint128 ambientSeeds_;
    uint128 concLiq_;
    uint64 seedDeflator_;
    uint64 concGrowth_;
  }

  /* @notice Calculates the total amount of liquidity represented by the liquidity
   *         curve object.
   * @dev    Result always rounds down from the real value, *assuming* that the fee
   *         accumulation fields are conservative lower-bound rounded.
   * @param curve - The currently active liqudity curve state. Remember this curve
   *    state is only known to be valid within the current tick.
   * @return - The total scalar liquidity. Equivalent to sqrt(X*Y) in an equivalent
   *           constant-product AMM. */
  function activeLiquidity(CurveState memory curve) internal pure returns (uint128) {
    uint128 ambient = CompoundMath.inflateLiqSeed(curve.ambientSeeds_, curve.seedDeflator_);
    return LiquidityMath.addLiq(ambient, curve.concLiq_);
  }

  /* @notice Similar to calcLimitFlows(), except returns the max possible flow in the
   *   *opposite* direction. I.e. if inBaseQty_ is True, returns the quote token flow
   *   for the swap. And vice versa..
   *
   * @dev The fixed-point result approximates the real valued formula with close but
   *   directionally unpredicable precision. It could be slightly above or slightly
   *   below. In the case of zero flows this could be substantially over. This
   *   function should not be used in any context with strict directional boundness
   *   requirements. */
  function calcLimitCounter(
    CurveState memory curve,
    uint128 swapQty,
    bool inBaseQty,
    uint128 limitPrice
  ) internal pure returns (uint128) {
    bool isBuy = limitPrice > curve.priceRoot_;
    uint128 denomFlow = calcLimitFlows(curve, swapQty, inBaseQty, limitPrice);
    return invertFlow(activeLiquidity(curve), curve.priceRoot_, denomFlow, isBuy, inBaseQty);
  }

  /* @notice Calculates the total quantity of tokens that can be swapped on the AMM
   *   curve until either 1) the limit price is reached or 2) the swap fills its
   *   entire remaining quantity.
   *
   * @dev This function does *NOT* account for the possibility of concentrated liq
   *   being knocked in/out as the price on the AMM curve moves across tick boundaries.
   *   It's the responsibility of the caller to properly check whether the limit price
   *   is within the bounds of the locally stable curve.
   *
   * @dev As long as CurveState's fee accum fields are conservatively lower bounded,
   *   and as long as limitPrice is accurate, then this function rounds down from the
   *   true real value. At most this round down loss of precision is tightly bounded at
   *   2 wei. (See comments in deltaPriceQuote() function)
   *
   * @param curve - The current state of the liquidity curve. No guarantee that it's
   *   liquidity stable through the entire limit range (see @dev above). Note that this
   *   function does *not* update the curve struct object.
   * @param swapQty - The total remaining quantity left in the swap.
   * @param inBaseQty - Whether the swap quantity is denomianted in base or quote side
   *                    token.
   * @param limitPrice - The highest (lowest) acceptable ending price of the AMM curve
   *   for a buy (sell) swap. Represented as Q64.64 fixed point square root of the
   *   price.
   *
   * @return - The maximum executable swap flow (rounded down by fixed precision).
   *           Denominated on the token side based on inBaseQty param. Will
   *           always return unsigned magnitude regardless of the direction. User
   *           can easily determine based on swap context. */
  function calcLimitFlows(
    CurveState memory curve,
    uint128 swapQty,
    bool inBaseQty,
    uint128 limitPrice
  ) internal pure returns (uint128) {
    uint128 limitFlow = calcLimitFlows(curve, inBaseQty, limitPrice);
    return limitFlow > swapQty ? swapQty : limitFlow;
  }

  function calcLimitFlows(CurveState memory curve, bool inBaseQty, uint128 limitPrice) private pure returns (uint128) {
    uint128 liq = activeLiquidity(curve);
    return inBaseQty ? deltaBase(liq, curve.priceRoot_, limitPrice) : deltaQuote(liq, curve.priceRoot_, limitPrice);
  }

  /* @notice Calculates the change to base token reserves associated with a price
   *   move along an AMM curve of constant liquidity.
   *
   * @dev Result is a tight lower-bound for fixed-point precision. Meaning if the
   *   the returned limit is X, then X will be inside the limit price and (X+1)
   *   will be outside the limit price. */
  function deltaBase(uint128 liq, uint128 priceX, uint128 priceY) internal pure returns (uint128) {
    unchecked {
      uint128 priceDelta = priceX > priceY ? priceX - priceY : priceY - priceX; // Condition assures never underflows
      return reserveAtPrice(liq, priceDelta, true);
    }
  }

  /* @notice Calculates the change to quote token reserves associated with a price
   *   move along an AMM curve of constant liquidity.
   *
   * @dev Result is almost always within a fixed-point precision unit from the true
   *   real value. However in certain rare cases, the result could be up to 2 wei
   *   below the true mathematical value. Caller should account for this */
  function deltaQuote(uint128 liq, uint128 price, uint128 limitPrice) internal pure returns (uint128) {
    // For purposes of downstream calculations, we make sure that limit price is
    // larger. End result is symmetrical anyway
    if (limitPrice > price) {
      return calcQuoteDelta(liq, limitPrice, price);
    } else {
      return calcQuoteDelta(liq, price, limitPrice);
    }
  }

  /* The formula calculated is
   *    F = L * d / (P*P')
   *   (where F is the flow to the limit price, where L is liquidity, d is delta,
   *    P is price and P' is limit price)
   *
   * Calculating this requires two stacked mulDiv. To meet the function's contract
   * we need to compute the result with tight fixed point boundaries at or below
   * 2 wei to conform to the function's contract.
   *
   * The fixed point calculation of flow is
   *    F = mulDiv(mulDiv(...)) = FR - FF
   *  (where F is the fixed point result of the formula, FR is the true real valued
   *   result with inifnite precision, FF is the loss of precision fractional round
   *   down, mulDiv(...) is a fixed point mulDiv call of the form X*Y/Z)
   *
   * The individual fixed point terms are
   *    T1 = mulDiv(X1, Y1, Z1) = T1R - T1F
   *    T2 = mulDiv(T1, Y2, Z2) = T2R - T2F
   *  (where T1 and T2 are the fixed point results from the first and second term,
   *   T1R and T2R are the real valued results from an infinite precision mulDiv,
   *   T1F and T2F are the fractional round downs, X1/Y1/Z1/Y2/Z2 are the arbitrary
   *   input terms in the fixed point calculation)
   *
   * Therefore the total loss of precision is
   *    FF = T2F + T1F * T2R/T1
   *
   * To guarantee a 2 wei precision loss boundary:
   *    FF <= 2
   *    T2F + T1F * T2R/T1 <= 2
   *    T1F * T2R/T1 <=  1      (since T2F as a round-down is always < 1)
   *    T2R/T1 <= 1             (since T1F as a round-down is always < 1)
   *    Y2/Z2 >= 1
   *    Z2 >= Y2 */
  function calcQuoteDelta(uint128 liq, uint128 priceBig, uint128 priceSmall) private pure returns (uint128) {
    uint128 priceDelta = priceBig - priceSmall;

    // This is cast to uint256 but is guaranteed to be less than 2^192 based off
    // the return type of divQ64
    uint256 termOne = FixedPoint.divQ64(liq, priceSmall);

    // As long as the final result doesn't overflow from 128-bits, this term is
    // guaranteed not to overflow from 256 bits. That's because the final divisor
    // can be at most 128-bits, therefore this intermediate term must be 256 bits
    // or less.
    //
    // By definition priceBig is always larger than priceDelta. Therefore the above
    // condition of Z2 >= Y2 is satisfied and the equation caps at a maximum of 2
    // wei of precision loss.
    uint256 termTwo = (termOne * uint256(priceDelta)) / uint256(priceBig);
    return termTwo.toUint128();
  }

  /* @notice Returns the amount of virtual reserves give the price and liquidity of the
   *   constant-product liquidity curve.
   *
   * @dev The actual pool probably holds significantly less collateral because of the
   *   use of concentrated liquidity.
   * @dev Results always round down from the precise real-valued mathematical result.
   *
   * @param liq - The total active liquidity in AMM curve. Represented as sqrt(X*Y)
   * @param price - The current active (square root of) price of the AMM curve.
   *                 represnted as Q64.64 fixed point
   * @param inBaseQty - The side of the pool to calculate the virtual reserves for.
   *
   * @returns The virtual reserves of the token (rounded down to nearest integer).
   *   Equivalent to the amount of tokens that would be held for an equivalent
   *   classical constant- product AMM without concentrated liquidity.  */
  function reserveAtPrice(uint128 liq, uint128 price, bool inBaseQty) internal pure returns (uint128) {
    return (inBaseQty ? uint256(FixedPoint.mulQ64(liq, price)) : uint256(FixedPoint.divQ64(liq, price))).toUint128();
  }

  /* @notice Calculated the amount of concentrated liquidity within a price range
   *         supported by a fixed amount of collateral. Note that this calculates the
   *         collateral only needed by one side of the pair.
   *
   * @dev    Always rounds fixed-point arithmetic result down.
   *
   * @param collateral The total amount of token collateral being pledged.
   * @param inBase If true, the collateral represents the base-side token in the pair.
   *               If false the quote side token.
   * @param priceX The price boundary of the concentrated liquidity position.
   * @param priceY The other price boundary of the concentrated liquidity position.
   * @returns The total amount of liquidity supported by the collateral. */
  function liquiditySupported(
    uint128 collateral,
    bool inBase,
    uint128 priceX,
    uint128 priceY
  ) internal pure returns (uint128) {
    if (!inBase) {
      return liquiditySupported(collateral, true, FixedPoint.recipQ64(priceX), FixedPoint.recipQ64(priceY));
    } else {
      unchecked {
        uint128 priceDelta = priceX > priceY ? priceX - priceY : priceY - priceX; // Conditional assures never underflows
        return liquiditySupported(collateral, true, priceDelta);
      }
    }
  }

  /* @notice Calculated the amount of ambient liquidity supported by a fixed amount of
   *         collateral. Note that this calculates the collateral only needed by one
   *         side of the pair.
   *
   * @dev    Always rounds fixed-point arithmetic result down.
   *
   * @param collateral The total amount of token collateral being pledged.
   * @param inBase If true, the collateral represents the base-side token in the pair.
   *               If false the quote side token.
   * @param price The current (square root) price of the curve as Q64.64 fixed point.
   * @returns The total amount of ambient liquidity supported by the collateral. */
  function liquiditySupported(uint128 collateral, bool inBase, uint128 price) internal pure returns (uint128) {
    return
      inBase
        ? FixedPoint.divQ64(collateral, price).toUint128By192()
        : FixedPoint.mulQ64(collateral, price).toUint128By192();
  }

  /* @dev The fixed point arithmetic results in output that's a close approximation
   *   to the true real value, but could be skewed in either direction. The output
   *   from this function should not be consumed in any context that requires strict
   *   boundness. */
  function invertFlow(
    uint128 liq,
    uint128 price,
    uint128 denomFlow,
    bool isBuy,
    bool inBaseQty
  ) private pure returns (uint128) {
    if (liq == 0) {
      return 0;
    }

    uint256 invertReserve = reserveAtPrice(liq, price, !inBaseQty);
    uint256 initReserve = reserveAtPrice(liq, price, inBaseQty);

    unchecked {
      uint256 endReserve = (isBuy == inBaseQty)
        ? initReserve + denomFlow // Will always fit in 256-bits
        : initReserve - denomFlow; // flow is always less than total reserves
      if (endReserve == 0) {
        return type(uint128).max;
      }

      uint256 endInvert = (uint256(liq) * uint256(liq)) / endReserve;
      return (endInvert > invertReserve ? endInvert - invertReserve : invertReserve - endInvert).toUint128();
    }
  }

  /* @notice Computes the amount of token over-collateralization needed to buffer any
   *   loss of precision rounding in the fixed price arithmetic on curve price. This
   *   is necessary because price occurs in different units than tokens, and we can't
   *   assume a single wei is sufficient to buffer one price unit.
   *
   * @dev In practice the price unit precision is almost always smaller than the token
   *   token precision. Therefore the result is usually just 1 wei. The exception are
   *   pools where liquidity is very high or price is very low.
   *
   * @param liq The total liquidity in the curve.
   * @param price The (square root) price of the curve in Q64.64 fixed point
   * @param inBase If true calculate the token precision on the base side of the pair.
   *               Otherwise, calculate on the quote token side.
   *
   * @return The conservative upper bound in number of tokens that should be
   *   burned to over-collateralize a single precision unit of price rounding. If
   *   the price arithmetic involves multiple units of precision loss, this number
   *   should be multiplied by that factor. */
  function priceToTokenPrecision(uint128 liq, uint128 price, bool inBase) internal pure returns (uint128) {
    unchecked {
      // To provide more base token collateral than price precision rounding:
      //     delta(B) >= L * delta(P)
      //     delta(P) <= 2^-64  (64 bit precision rounding)
      //     delta(B) >= L * 2^-64
      //  (where L is liquidity, B is base token reserves, P is price)
      if (inBase) {
        // Since liq is shifted right by 64 bits, adding one can never overflow
        return (liq >> 64) + 1;
      } else {
        // Calculate the quote reservs at the current price and a one unit price step,
        // then take the difference as the minimum required quote tokens needed to
        // buffer that price step.
        uint192 step = FixedPoint.divQ64(liq, price - 1);
        uint192 start = FixedPoint.divQ64(liq, price);

        // next reserves will always be equal or greater than start reserves, so the
        // subtraction will never underflow.
        uint192 delta = step - start;

        // Round tokens up conservative.
        // This will never overflow because 192 bit nums incremented by 1 will always fit in
        // 256 bits.
        uint256 deltaRound = uint256(delta) + 1;

        return deltaRound.toUint128();
      }
    }
  }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.23;

import "./SafeCast.sol";
import "./TickMath.sol";

/// @title Math library for liquidity
library LiquidityMath {
  /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
  /// @param x The liquidity before change
  /// @param y The delta by which liquidity should be changed
  /// @return z The liquidity delta
  function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
    unchecked {
      // Arithmetic checks done explicitly
      if (y < 0) {
        require((z = x - uint128(-y)) < x);
      } else {
        require((z = x + uint128(y)) >= x);
      }
    }
  }

  /// @notice Add an unsigned liquidity delta to liquidity and revert if it overflows or underflows
  /// @param x The liquidity before change
  /// @param y The delta by which liquidity should be changed
  /// @return z The liquidity delta
  function addLiq(uint128 x, uint128 y) internal pure returns (uint128 z) {
    unchecked {
      // Arithmetic checks done explicitly
      require((z = x + y) >= x);
    }
  }

  /// @notice Add an unsigned liquidity delta to liquidity and revert if it overflows or underflows
  /// @param x The liquidity before change
  /// @param y The delta by which liquidity should be changed
  /// @return z The liquidity delta
  function addLots(uint96 x, uint96 y) internal pure returns (uint96 z) {
    unchecked {
      // Arithmetic checks done explicitly
      require((z = x + y) >= x);
    }
  }

  /// @notice Subtract an unsigned liquidity delta to liquidity and revert if it overflows or underflows
  /// @param x The liquidity before change
  /// @param y The delta by which liquidity should be changed
  /// @return z The liquidity delta
  function minusDelta(uint128 x, uint128 y) internal pure returns (uint128 z) {
    z = x - y;
  }

  /* @notice Same as minusDelta, but operates on lots of liquidity rather than outright
   *         liquiidty. */
  function minusLots(uint96 x, uint96 y) internal pure returns (uint96 z) {
    z = x - y;
  }

  /* In certain contexts we need to represent liquidity, but don't have the full 128
   * bits or precision. The compromise is to use "lots" of liquidity, which is liquidity
   * represented as multiples of 1024. Usually in those contexts, max lots is capped at
   * 2^96 (equivalent to 2^106 of liquidity.)
   *
   * More explanation, along with examples can be found in the documentation at
   * docs/LiquidityLots.md in the project respository. */
  uint16 constant LOT_SIZE = 1024;
  uint8 constant LOT_SIZE_BITS = 10;

  /* By utilizing the least significant digit of the liquidity lots value, we can
   * support special types of "knockout" liquidity, that when crossed trigger specific
   * calls. The aggregate knockout liquidity will always sum to an odd number of lots
   * whereas all vanilla resting liquidity will have an even number of lots. That
   * means we can test whether any level has knockout liquidity simply by seeing if the
   * the total sum is an odd number.
   *
   * More explanation, along with examples can be found in the documentation at
   * docs/LiquidityLots.md in the project respository. */
  uint96 constant KNOCKOUT_FLAG_MASK = 0x1;
  uint8 constant LOT_ACTIVE_BITS = 11;

  /* @notice Converts raw liquidity to lots of resting liquidity. (See comment above
   *         defining lots. */
  function liquidityToLots(uint128 liq) internal pure returns (uint96) {
    uint256 lots = liq >> LOT_SIZE_BITS;
    uint256 liqTrunc = lots << LOT_SIZE_BITS;
    bool hasEmptyMask = (lots & KNOCKOUT_FLAG_MASK == 0);
    require(hasEmptyMask && liqTrunc == liq && lots < type(uint96).max, "FD");
    return uint96(lots);
  }

  /* @notice Checks if an aggergate lots counter contains a knockout liquidity component
   *         by checking the least significant bit.
   *
   * @dev    Note that it's critical that the sum *total* of knockout lots on any
   *         given level be an odd number. Don't add two odd knockout lots together
   *         without renormalzing, because they'll sum to an even lot quantity. */
  function hasKnockoutLiq(uint96 lots) internal pure returns (bool) {
    return lots & KNOCKOUT_FLAG_MASK > 0;
  }

  /* @notice Truncates an existing liquidity quantity into a quantity that's a multiple
   *         of the 2048-multiplier defining even-sized lots of liquidity. */
  function shaveRoundLots(uint128 liq) internal pure returns (uint128) {
    return (liq >> LOT_ACTIVE_BITS) << LOT_ACTIVE_BITS;
  }

  /* @notice Truncates an existing liquidity quantity into a quantity that's a multiple
   *         of the 2048-multiplier defining even-sized lots of liquidity, but rounds up
   *         to the next multiple of 2048. */
  function shaveRoundLotsUp(uint128 liq) internal pure returns (uint128 result) {
    unchecked {
      require((liq & 0xfffffffffffffffffffffffffffff800) != 0xfffffffffffffffffffffffffffff800, "overflow");

      // By shifting down 11 bits, adding the one will always fit in 128 bits
      uint128 roundUp = (liq >> LOT_ACTIVE_BITS) + 1;
      return (roundUp << LOT_ACTIVE_BITS);
    }
  }

  /* @notice Given a number of lots of liquidity converts to raw liquidity value. */
  function lotsToLiquidity(uint96 lots) internal pure returns (uint128) {
    uint96 realLots = lots & ~KNOCKOUT_FLAG_MASK;
    return uint128(realLots) << LOT_SIZE_BITS;
  }

  /* @notice Given a positive and negative delta lots value net out the raw liquidity
   *         delta. */
  function netLotsOnLiquidity(uint96 incrLots, uint96 decrLots) internal pure returns (int128) {
    unchecked {
      // Original values are 96-bits, every possible difference will fit in signed-128 bits
      return lotToNetLiq(incrLots) - lotToNetLiq(decrLots);
    }
  }

  /* @notice Given an amount of lots of liquidity converts to a signed raw liquidity
   *         delta. (Which by definition is always positive.) */
  function lotToNetLiq(uint96 lots) internal pure returns (int128) {
    return int128(lotsToLiquidity(lots));
  }

  /* @notice Blends the weighted average of two fee reward accumulators based on the
   *         relative size of two liquidity position.
   *
   * @dev To be conservative in terms of rewards/collateral, this function always
   *   rounds up to 2 units of precision. We need mileage rounded up, so reward payouts
   *   are rounded down. However this could lead to the technically "impossible"
   *   situation where the mileage on a subsequent rewards burn is smaller than the
   *   blended mileage in the liquidity postion. Technically this shouldn't happen
   *   because mileage only increases through time. However this is a non-consequential
   *   failure. burnPosLiq() just treats it as a zero reward situation, and the staker
   *   loses an economically non-meaningful amount of rewards on the burn. */
  function blendMileage(uint64 mileageX, uint128 liqX, uint64 mileageY, uint128 liqY) internal pure returns (uint64) {
    if (liqY == 0) {
      return mileageX;
    }
    if (liqX == 0) {
      return mileageY;
    }
    if (mileageX == mileageY) {
      return mileageX;
    }
    uint64 termX = calcBlend(mileageX, liqX, liqX + liqY);
    uint64 termY = calcBlend(mileageY, liqY, liqX + liqY);

    // With mileage we want to be conservative on the upside. Under-estimating
    // mileage means overpaying rewards. So, round up the fractional weights.
    return (termX + 1) + (termY + 1);
  }

  /* @notice Calculates a weighted blend of adding incremental rewards mileage. */
  function calcBlend(uint64 mileage, uint128 weight, uint128 total) private pure returns (uint64) {
    unchecked {
      // Intermediate results will always fit in 256-bits
      // Can safely cast, because result will always be smaller than original since
      // weight is less than total.
      return uint64((uint256(mileage) * uint256(weight)) / uint256(total));
    }
  }

  /* @dev Computes a rounding safe calculation of the accumulated rewards rate based on
   *      a beginning and end mileage counter. */
  function deltaRewardsRate(uint64 feeMileage, uint64 oldMileage) internal pure returns (uint64) {
    uint64 REWARD_ROUND_DOWN = 2;
    if (feeMileage > oldMileage + REWARD_ROUND_DOWN) {
      return feeMileage - oldMileage - REWARD_ROUND_DOWN;
    } else {
      return 0;
    }
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 29 of 36 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 32 of 36 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 33 of 36 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 34 of 36 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();
}

// SPDX-License-Identifier: GPL-3
pragma solidity 0.8.23;

import "./FixedPoint.sol";
import "./TickMath.sol";
import "./SafeCast.sol";

/* @title Compounding math library
 * @notice Library provides convenient math functionality for various transformations
 *         and reverse transformations related to compound growth. */
library CompoundMath {
  using SafeCast for uint256;

  /* @notice Provides a safe lower-bound approximation of the square root of (1+x)
   *         based on a two-term Taylor series expansion. The purpose is to calculate
   *         the square root for small compound growth rates.
   *
   *         Both the input and output values are passed as the growth rate *excluding*
   *         the 1.0 multiplier base. For example assume the input (X) is 0.1, then the
   *         output Y is:
   *             (1 + Y) = sqrt(1+X)
   *             (1 + Y) = sqrt(1 + 0.1)
   *             (1 + Y) = 1.0488 (approximately)
   *                   Y = 0.0488 (approximately)
   *         In the example the square root of 10% compound growth is 4.88%
   *
   *         Another example, assume the input (X) is 0.6, then the output (Y) is:
   *             (1 + Y) = sqrt(1+X)
   *             (1 + Y) = sqrt(1 + 0.6)
   *             (1 + Y) = 1.264 (approximately)
   *                   Y = 0.264 (approximately)
   *         In the example the square root of 60% growth is 26.4% compound growth
   *
   *         Another example, assume the input (X) is 0.018, then the output (Y) is:
   *             (1 + Y) = sqrt(1+X)
   *             (1 + Y) = sqrt(1 + 0.018)
   *             (1 + Y) = 1.00896 (approximately)
   *                   Y = 0.00896 (approximately)
   *         In the example the square root of 1.8% growth is 0.896% compound growth
   *
   * @dev    Due to approximation error, only safe to use on input in the range of
   *         [0,1). Will always round down from the true real value.
   *
   * @param x  The value of x in (1+x). Represented as a Q16.48 fixed-point
   * @returns   The value of y for which (1+y) = sqrt(1+x). Represented as Q16.48 fixed point
   * */
  function approxSqrtCompound(uint64 x64) internal pure returns (uint64) {
    // Taylor series error becomes too large above 2.0. Approx is still conservative
    // but the angel's share becomes unreasonable.
    require(x64 < FixedPoint.Q48);

    unchecked {
      uint256 x = uint256(x64);
      // Shift by 48, to bring x^2 back in fixed point precision
      uint256 xSq = (x * x) >> 48; // x * x never overflows 256 bits, because x is 64 bits
      uint256 linear = x >> 1; // Linear Taylor series term is x/2
      uint256 quad = xSq >> 3; // Quadratic Tayler series term ix x^2/8;

      // This will always fit in 64 bits because result is smaller than original/
      // Will always be greater than 0, because x^2 < x for x < 1
      return uint64(linear - quad);
    }
  }

  /* @notice Computes the result from compounding two cumulative growth rates.
   * @dev    Rounds down from the real value. Caps the result if type exceeds the max
   *         fixed-point value.
   * @param x The compounded growth rate as in (1+x). Represted as Q16.48 fixed-point.
   * @param y The compounded growth rate as in (1+y). Represted as Q16.48 fixed-point.
   * @returns The cumulative compounded growth rate as in (1+z) = (1+x)*(1+y).
   *          Represented as Q16.48 fixed-point. */
  function compoundStack(uint64 x, uint64 y) internal pure returns (uint64) {
    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 num = (ONE + x) * (ONE + y); // Never overflows 256-bits because x and y are 64 bits
      uint256 term = num >> 48; // Divide by 48-bit ONE
      uint256 z = term - ONE; // term will always be >= ONE
      if (z >= type(uint64).max) {
        return type(uint64).max;
      }
      return uint64(z);
    }
  }

  /* @notice Computes the result from backing out a compounded growth value from
   *         an existing value. The inverse of compoundStack().
   * @dev    Rounds down from the real value.
   * @param val The fixed price representing the starting value that we want
   *            to back out a pre-growth seed from.
   * @param deflator The compounded growth rate to back out, as in (1+g). Represented
   *                 as Q16.48 fixed-point
   * @returns The pre-growth value as in val/(1+g). Rounded down as an unsigned
   *          integer. */
  function compoundShrink(uint64 val, uint64 deflator) internal pure returns (uint64) {
    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 multFactor = ONE + deflator; // Never overflows because both fit inside 64 bits
      uint256 num = uint256(val) << 48; // multiply by 48-bit ONE
      uint256 z = num / multFactor; // multFactor will never be zero because it's bounded by 1
      return uint64(z); // Will always fit in 64-bits because shrink can only decrease
    }
  }

  /* @notice Computes the implied compound growth rate based on the division of two
   *     arbitrary quantities.
   * @dev    Based on this function's use, calulated growth rate will always be
   *         capped at 100%. The implied growth rate must always be non-negative.
   * @param inflated The larger value to be divided. Any 128-bit integer or fixed point
   * @param seed The smaller value to use as a divisor. Any 128-bit integer or fixed
   *             point.
   * @returns The cumulative compounded growth rate as in (1+z) = (1+x)/(1+y).
   *          Represeted as Q16.48. */
  function compoundDivide(uint128 inflated, uint128 seed) internal pure returns (uint64) {
    // Otherwise arithmetic doesn't safely fit in 256 -bit
    require(inflated < type(uint208).max && inflated >= seed);

    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 num = uint256(inflated) << 48;
      uint256 z = (num / seed) - ONE; // Never underflows because num is always greater than seed

      if (z >= ONE) {
        return uint64(ONE);
      }
      return uint64(z);
    }
  }

  /* @notice Calculates a final price from applying a growth rate to a starting price.
   * @dev    Always rounds in the direction of @shiftUp
   * @param price The starting price to be compounded. Q64.64 fixed point.
   * @param growth The compounded growth rate to apply, as in (1+g). Represented
   *                as Q16.48 fixed-point
   * @param shiftUp If true compounds the starting price up, so the result will be
   *                greater. If false, compounds the price down so the result will be
   *                smaller than the original price.
   * @returns The post-growth price as in price*(1+g) (or price*(1-g) if shiftUp is
   *          false). Q64.64 always rounded in the direction of shiftUp. */
  function compoundPrice(uint128 price, uint64 growth, bool shiftUp) internal pure returns (uint128) {
    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 multFactor = ONE + growth; // Guaranteed to fit in 65-bits

      if (shiftUp) {
        uint256 num = uint256(price) * multFactor; // Guaranteed to fit in 193 bits
        uint256 z = num >> 48; // De-scale by the 48-bit growth precision
        return (z + 1).toUint128(); // Round in the price shift
      } else {
        uint256 num = uint256(price) << 48;
        // No need to safe cast, since this will be smaller than original price
        return uint128(num / multFactor);
      }
    }
  }

  /* @notice Inflates a starting value by a cumulative growth rate.
   * @dev    Rounds down from the real value. Result is capped at max(uint128).
   * @param seed The pre-inflated starting value as unsigned integer
   * @param growth Cumulative growth rate as Q16.48 fixed-point
   * @return The ending value = seed * (1 + growth). Rounded down to nearest
   *         integer value */
  function inflateLiqSeed(uint128 seed, uint64 growth) internal pure returns (uint128) {
    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 num = uint256(seed) * uint256(ONE + growth); // Guaranteed to fit in 256
      uint256 inflated = num >> 48; // De-scale by the 48-bit growth precision;

      if (inflated > type(uint128).max) {
        return type(uint128).max;
      }
      return uint128(inflated);
    }
  }

  /* @notice Deflates a starting value by a cumulative growth rate.
   * @dev    Rounds down from the real value.
   * @param liq The post-inflated liquidity as unsigned integer
   * @param growth Cumulative growth rate as Q16.48 fixed-point
   * @return The ending value = liq / (1 + growth). Rounded down to nearest
   *         integer value */
  function deflateLiqSeed(uint128 liq, uint64 growth) internal pure returns (uint128) {
    unchecked {
      uint256 ONE = FixedPoint.Q48;
      uint256 num = uint256(liq) << 48;
      uint256 deflated = num / (ONE + growth); // Guaranteed to fit in 256-bits

      // No need to safe cast-- will allways be smaller than starting
      return uint128(deflated);
    }
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@prb/test/=lib/prb-test/",
    "forge-std/=lib/forge-std/",
    "@uniswap/v3-periphery/=lib/v3-periphery/contracts/",
    "@uniswap/v3-core/=lib/v3-core/contracts/",
    "base64-sol/=node_modules/base64-sol/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "prb-test/=lib/prb-test/src/",
    "v3-core/=lib/v3-core/contracts/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {
    "src/libraries/VaultLibrary.sol": {
      "VaultLibrary": "0x434b096C9fc3F316490F8B07D7d9b34a2eF39cB6"
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"int24","name":"_baseWidth","type":"int24"},{"internalType":"int24","name":"_limitWidth","type":"int24"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint8","name":"assetIdx","type":"uint8"},{"internalType":"uint16","name":"fee","type":"uint16"},{"internalType":"uint16","name":"investedPercentage","type":"uint16"},{"internalType":"uint16","name":"swapSlippage","type":"uint16"},{"internalType":"address","name":"feeRecipient","type":"address"},{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"address","name":"governor","type":"address"},{"internalType":"address","name":"cQuery","type":"address"},{"internalType":"address","name":"cSwapDex","type":"address"},{"internalType":"address","name":"oracle","type":"address"}],"internalType":"struct SymetricStrategyParameters","name":"sParams","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"BadRange","type":"error"},{"inputs":[],"name":"BadSetup","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"NotEnoughReceived","type":"error"},{"inputs":[],"name":"NotEnoughToken","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"WrongMessageValue","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"int24","name":"baseWidth","type":"int24"},{"indexed":false,"internalType":"int24","name":"limitWidth","type":"int24"}],"name":"BaseAndLimitUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"feeRecipient","type":"address"}],"name":"FeeRecipientSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"fee","type":"uint16"}],"name":"FeesSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"investedPercentage","type":"uint16"}],"name":"InvestedPercentageSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oracle","type":"address"}],"name":"OracleSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"padding","type":"uint8"}],"name":"PaddingSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"swapSlippage","type":"uint16"}],"name":"SwapSlippageSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GOVERNANCE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GUARDIAN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseWidth","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crocsQuery","outputs":[{"internalType":"contract CrocsQuery","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crocsSwapDex","outputs":[{"internalType":"contract CrocsSwapDex","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentTick","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLpParams","outputs":[{"components":[{"internalType":"int24","name":"upperTick","type":"int24"},{"internalType":"int24","name":"lowerTick","type":"int24"}],"internalType":"struct LpParam[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int24","name":"_upperTick","type":"int24"},{"internalType":"int24","name":"_lowerTick","type":"int24"}],"name":"getPosition","outputs":[{"internalType":"uint128","name":"","type":"uint128"},{"internalType":"uint128","name":"","type":"uint128"},{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPositions","outputs":[{"internalType":"uint256","name":"amount0Invested","type":"uint256"},{"internalType":"uint256","name":"amount1Invested","type":"uint256"},{"internalType":"uint256","name":"amount0Idle","type":"uint256"},{"internalType":"uint256","name":"amount1Idle","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenAddresses","outputs":[{"internalType":"address[2]","name":"","type":"address[2]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"investDust","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"investedPercentage","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"limitWidth","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"padding","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rebalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"minimumReceive","type":"uint256"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeRecipient","type":"address"}],"name":"setFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"_fee","type":"uint16"}],"name":"setFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"_investedPercentage","type":"uint16"}],"name":"setInvestedPercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oracle","type":"address"}],"name":"setOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_padding","type":"uint8"}],"name":"setPadding","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"_swapSlippage","type":"uint16"}],"name":"setSwapSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapSlippage","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenAddresses","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int24","name":"_baseWidth","type":"int24"},{"internalType":"int24","name":"_limitWidth","type":"int24"}],"name":"updateBaseAndLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"minimumReceive","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

610100806040523462000da25762006b1d80380380916200002182856200193d565b8339810160608282031262000da2576200003b8262001961565b916200004a6020820162001961565b60408201519091906001600160401b03811162000da2576101a0938482840182031262000da2576040519485016001600160401b0381118682101762000cba57604052828201516001600160401b03811162000da25781620000b091848601016200198c565b855282820160200151906001600160401b03821162000da257620000d891838501016200198c565b806020860152620000ee604083850101620019f7565b60408601526200010360608385010162001a06565b60608601526200011860808385010162001a06565b60808601526200012d60a08385010162001a06565b60a08601526200014260c08385010162001a16565b60c08601526200015760e08385010162001a16565b60e08601526200016d6101008385010162001a16565b610100860152620001846101208385010162001a16565b610120860152620001c761018061014093620001a4858288010162001a16565b8589015261016095620001bb878383010162001a16565b878a0152010162001a16565b610180860152845160016000558051906001600160401b03821162000cba5760045490600182811c92168015620018fa575b6020831014620017cc5781601f84931162001888575b50602090601f8311600114620017f957600092620017ed575b50508160011b916000199060031b1c1916176004555b8051906001600160401b03821162000cba5760055490600182811c92168015620017e2575b6020831014620017cc5781601f84931162001776575b50602090601f8311600114620016e757600092620016db575b50508160011b916000199060031b1c1916176005555b6007805461ff0019166104001790556101208401516001600160a01b0316158015620016c5575b8015620016ae575b80156200168e575b80156200167a575b801562001666575b801562001652575b62000e49578301516001600160a01b0390811660e081815292850151821660c052828501516101008601516040516001623a707b60e21b03198152918416600483015290921660248301526101a46044830152909190829060649082905afa90811562000db05760009162001589575b506060015160e083015161ffff90911660010b93906001600160a01b031680620015155750600460125b61010085015160405163313ce56760e01b81529260209184919082906001600160a01b03165afa801562000db057600090620014d3575b61018086015160405163313ce56760e01b81529350602090849060049082906001600160a01b03165afa91821562000db0576000926200148f575b6101808701516040516350d25bcd60e01b81529450602090859060049082906001600160a01b03165afa93841562000db05760009462001452575b506200044a9062001a2b565b9183838102048314841517156200143c57620004669062001a2b565b908115620010e25760e0870151600b80546001600160a01b03199081166001600160a01b039384169081179092556101008a0151600c80549092169316928317905590808281811162001430575b50506001600160a01b03818116908316101562000da257604080516001600160a01b039384166020820190815293909216908201526101a46060808301919091528152620005028162001921565b5190206040805160208101929092526201000f828201528152916001600160401b03606084019081119084111762000cba57606083016040819052835160208086019190912060c0516302ce8af360e01b8452606487019190915290919060249082906001600160a01b03165afa92831562000db057600093620013f0575b50620100026001600160801b038416101580620013cd575b1562000da2576001600160401b600160c01b03604085901b166001600160801b03811160071b81811c6001600160401b03811160061b81811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c9182118a1b82811c9a909a119590971793909317919091171784178617919091179484939091608087106200136a575050505050607e1982011c5b808002607f1c81800260ff1c1c808002607f1c81800260ff1c1c808002607f1c81800260ff1c1c808002607f1c81800260ff1c1c808002607f1c81800260ff1c1c808002607f1c81800260ff1c1c90818002607f1c82800260ff1c1c92838002607f1c84800260ff1c1c94858002607f1c86800260ff1c1c96878002607f1c88800260ff1c1c98898002607f1c8a800260ff1c1c9a8b8002607f1c8c800260ff1c1c9c8d808002607f1c90800260ff1c1c800260cd1c6604000000000000169d800260cc1c6608000000000000169c800260cb1c6610000000000000169b800260ca1c6620000000000000169a800260c91c66400000000000001699800260c81c66800000000000001698800260c71c6701000000000000001697800260c61c6702000000000000001696800260c51c6704000000000000001695800260c41c6708000000000000001694800260c31c6710000000000000001693800260c21c6720000000000000001692800260c11c6740000000000000001691800260c01c6780000000000000001690607f190160401b1717171717171717171717171717693627a301d71055774c85026fdb2df09e81959a81455e260799a0632f810160801d60020b6f028f6481ab7f045a5af012a19d003aa919820160801d60020b1460001462000ecd576f028f6481ab7f045a5af012a19d003aa9190160801d60020b9360ff93505b60405195620008518762001905565b020484528460020b60208501528560020b604085015287606085015216608083015260020b60a0820152600160c082015260c060405191630377eb8760e21b835280516004840152602081015160020b6024840152604081015160020b6044840152606081015160020b606484015260ff608082015116608484015260a081015160020b60a48401520151151560c482015260008160e48173434b096c9fc3f316490f8b07d7d9b34a2ef39cb65af494851562000db05760009160009662000e5a575b508151908651820362000e495760005b82811062000dbc5750505060ff60408501511660805260ff604085015116600281101562000ca457600b01546001600160a01b031662000d185760125b60a05260095460006009558062000cd0575b5080519060005b82811062000bf45762000b0486868660018060a01b0360e0840151168062000bd3575b5061010083015160c051620009bf916001600160a01b03918216911662001ac9565b60018060a01b0360c08401511660018060a01b0319600a541617600a556affffff000000000000000060608401519260075465ffff00000000608087015160201b169063ffff000067ffff00000000000060a089015160301b169360581b6dffffff0000000000000000000000169660101b169062010000600160701b0319161717179160401b16171760075560018060a01b036101808201511660018060a01b0319600854161760085560008051602062006afd83398151915280600052600660205260016040600020018181549155817fbd79b86ffe0ab8e8776151514217cd7cacd52c909f66475c3af44e129f0b00ff918183600080a47f8b5b16d04624687fcf0d0228f19993c9157c1ed07b41d8d430fd9100eb099fe8806000526001604060002001918383549355600080a461012001516001600160a01b031662001c39565b50604051614cdb908162001e2282396080518181816106fa015281816107d601528181610c1601528181610c9601528181610cbd01528181610d2c01528181610e3e01528181610ea601528181610eec015281816110ed01528181611ad6015281816125ec0152613d94015260a0518161155e015260c051818181610a0301528181611ec70152818161344d01528181614103015281816141e7015261481e015260e05181818161048201528181610f7d0152818161292d01528181612afc01528181613504015261438e0152f35b60c05162000bed916001600160a01b039091169062001ac9565b846200099d565b62000c00818362001ab4565b5160020b9062000c11818962001ab4565b5160020b6040519283604081011060018060401b0360408601111762000cba576040840160405283526020830152600954916801000000000000000083101562000cba57600183018060095583101562000ca45760019260096000526020600020019080519062ffffff6020845492015160181b65ffffff0000001692169065ffffffffffff191617179055016200097a565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052604160045260246000fd5b60096000527f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af90815b818301811062000d0b57505062000973565b6000815560010162000cf9565b60ff604085015116600281101562000ca457600b015460405163313ce56760e01b815290602090829060049082906001600160a01b03165afa90811562000db05760009162000d69575b5062000961565b90506020813d60201162000da7575b8162000d87602093836200193d565b8101031262000da25762000d9b90620019f7565b3862000d62565b600080fd5b3d915062000d78565b6040513d6000823e3d90fd5b62000dc8818562001ab4565b5160020b8262000dd9838b62001ab4565b5160020b80831292831562000e2d575b50821562000e14575b505062000e025760010162000924565b6040516309aab2bb60e41b8152600490fd5b62000e20925062001cdc565b60020b1515823862000df2565b62000e3c919350829062001cdc565b60020b1515913862000de9565b60405162de0e3560e11b8152600490fd5b915094503d806000833e62000e7081836200193d565b604082828101031262000da25781516001600160401b03811162000da25762000e9f9082840190840162001a3d565b60208301519092906001600160401b03811162000da25762000ec5928201910162001a3d565b943862000914565b620a276d196fdb2df09e81959a81455e260799a0632f820160801d60020b12158062001344575b1562000da25760006fdb2df09e81959a81455e260799a0632f820160801d60020b121562001324576fdb2df09e81959a81455e260799a0632f810160801d60020b600003935b600185161562001319576ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b03169460028116620012fc575b60048116620012df575b60088116620012c2575b60108116620012a5575b6020811662001288575b604081166200126b575b608081166200124e575b610100811662001231575b610200811662001214575b6104008116620011f7575b6108008116620011da575b6110008116620011bd575b6120008116620011a0575b614000811662001183575b618000811662001166575b62010000811662001149575b6202000081166200112d575b62040000811662001111575b6208000016620010f8575b60006fdb2df09e81959a81455e260799a0632f830160801d60020b13620010cd575b60ff94906001600160401b038216620010c4576000905b6001600160801b0390811660409390931c918716919091011611620010a5576fdb2df09e81959a81455e260799a0632f0160801d60020b5b9362000842565b6f028f6481ab7f045a5af012a19d003aa9190160801d60020b6200109e565b60019062001066565b8415620010e25760001994909404936200104f565b634e487b7160e01b600052601260045260246000fd5b936b048a170391f7dc42444e8fa20260801c936200102d565b6d2216e584f5fa1ea926041bedfe9890950260801c9462001022565b946e5d6af8dedb81196699c329225ee6040260801c9462001016565b946f09aa508b5b7a84e1c677de54f3e99bc90260801c946200100a565b946f31be135f97d08fd981231505542fcfa60260801c9462000ffe565b946f70d869a156d2a1b890bb3df62baf32f70260801c9462000ff3565b946fa9f746462d870fdf8a65dc1f90e061e50260801c9462000fe8565b946fd097f3bdfd2022b8845ad8f792aa58250260801c9462000fdd565b946fe7159475a2c29b7443b29c7fa6e889d90260801c9462000fd2565b946ff3392b0822b70005940c7a398e4b70f30260801c9462000fc7565b946ff987a7253ac413176f2b074cf7815e540260801c9462000fbc565b946ffcbe86c7900a88aedcffc83b479aa3a40260801c9462000fb1565b946ffe5dee046a99a2a811c461f1969c30530260801c9462000fa6565b946fff2ea16466c96a3843ec78b326b528610260801c9462000f9c565b946fff973b41fa98c081472e6896dfb254c00260801c9462000f92565b946fffcb9843d60f6159c9db58835c9266440260801c9462000f88565b946fffe5caca7e10e4e61c3624eaa0941cd00260801c9462000f7e565b946ffff2e50f5f656932ef12357cf3c7fdcc0260801c9462000f74565b946ffff97272373d413259a46990580e213a0260801c9462000f6a565b600160801b62000f56565b6fdb2df09e81959a81455e260799a0632f810160801d60020b9362000f3a565b50620cb14a6fdb2df09e81959a81455e260799a0632f820160801d60020b131562000ef4565b600190831c1160ff6001600160401b03808611600690811b87901c63ffffffff811160051b90811c61ffff811160041b90811c9490941160031b97909210901b6001600160801b03881160071b17171793909317171717607f031b90506200063b565b506f0ffff5433e2b3d8211706e6102aa94726001600160801b0384161062000599565b9092506020813d60201162001427575b8162001412602093606084016200193d565b8101031262000da25760600151913862000581565b3d915062001400565b915091503880620004b4565b634e487b7160e01b600052601160045260246000fd5b9093506020813d60201162001486575b8162001471602093836200193d565b8101031262000da25751926200044a6200043e565b3d915062001462565b91506020833d602011620014ca575b81620014ad602093836200193d565b8101031262000da257620014c3600493620019f7565b9162000403565b3d91506200149e565b506020823d6020116200150c575b81620014f0602093836200193d565b8101031262000da25762001506600492620019f7565b620003c8565b3d9150620014e1565b60206004916040519283809263313ce56760e01b82525afa801562000db05760009062001547575b6004915062000391565b506020813d60201162001580575b8162001564602093836200193d565b8101031262000da2576200157a600491620019f7565b6200153d565b3d915062001555565b905060e0813d60e01162001649575b81620015a760e093836200193d565b8101031262000da257606061ffff916200163c60c060405192620015cb8462001905565b620015d681620019f7565b8452620015e66020820162001a06565b6020850152620015f960408201620019f7565b60408501526200160b85820162001a06565b858501526200161d60808201620019f7565b60808501526200163060a08201620019f7565b60a085015201620019f7565b60c0820152915062000367565b3d915062001598565b5061271061ffff60a08601511611620002f7565b5061271061ffff60808601511611620002ef565b5061271061ffff60608601511611620002e7565b5060e08401516101008501516001600160a01b03918216911610620002df565b506101808401516001600160a01b031615620002d7565b5060c08401516001600160a01b031615620002cf565b01519050388062000292565b6005600090815293507f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db091905b601f19841685106200175a576001945083601f1981161062001740575b505050811b01600555620002a8565b015160001960f88460031b161c1916905538808062001731565b8181015183556020948501946001909301929091019062001714565b90915060056000526020600020601f840160051c810160208510620017c4575b90849392915b601f830160051c82018110620017b457505062000279565b600081558594506001016200179c565b508062001796565b634e487b7160e01b600052602260045260246000fd5b91607f169162000263565b01519050388062000228565b6004600090815293507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b91905b601f19841685106200186c576001945083601f1981161062001852575b505050811b016004556200023e565b015160001960f88460031b161c1916905538808062001843565b8181015183556020948501946001909301929091019062001826565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c810160208510620018f2575b90849392915b601f830160051c82018110620018e25750506200020f565b60008155859450600101620018ca565b5080620018c4565b91607f1691620001f9565b60e081019081106001600160401b0382111762000cba57604052565b608081019081106001600160401b0382111762000cba57604052565b601f909101601f19168101906001600160401b0382119082101762000cba57604052565b51908160020b820362000da257565b6001600160401b03811162000cba57601f01601f191660200190565b9080601f8301121562000da257815190620019a78262001970565b92620019b760405194856200193d565b8284526020916020848301011162000da25760005b838110620019e35750505060206000918301015290565b8181018301518582018401528201620019cc565b519060ff8216820362000da257565b519061ffff8216820362000da257565b51906001600160a01b038216820362000da257565b60ff16604d81116200143c57600a0a90565b81601f8201121562000da2578051916020916001600160401b03841162000cba578360051b906040519462001a75858401876200193d565b8552838086019282010192831162000da2578301905b82821062001a9a575050505090565b83809162001aa88462001961565b81520191019062001a8b565b805182101562000ca45760209160051b010190565b604051636eb1769f60e11b81523060048201526001600160a01b0392831660248201819052928216919060208082604481875afa91821562000db05760009262001c04575b5060001982018092116200143c576040519360008083870163095ea7b360e01b958682528960248a015260448901526044885262001b4c8862001921565b87519082855af19062001b5e62001cef565b8262001bcc575b508162001bc0575b501562001b7c575b5050505050565b62001bb59462001baf92604051928301526024820152600060448201526044815262001ba88162001921565b8262001d3e565b62001d3e565b388080808062001b75565b90503b15153862001b6d565b80919250519083821592831562001be9575b505050903862001b65565b62001bfb935082018101910162001d24565b38838162001bde565b9080925081813d831162001c31575b62001c1f81836200193d565b8101031262000da25751903862001b0e565b503d62001c13565b6001600160a01b031660008181527fab4ab2000706c1edca36921176badacea74d146983214a5caf9b3c51b4b34356602052604081205490919060008051602062006afd8339815191529060ff1662001cd75780835260066020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b9060020b908115620010e25760020b0790565b3d1562001d1f573d9062001d038262001970565b9162001d1360405193846200193d565b82523d6000602084013e565b606090565b9081602091031262000da25751801515810362000da25790565b60008062001d6b9260018060a01b03169360208151910182865af162001d6362001cef565b908362001db9565b805190811515918262001d9b575b505062001d835750565b60249060405190635274afe760e01b82526004820152fd5b62001db0925060208091830101910162001d24565b15388062001d79565b9062001de2575080511562001dd057805190602001fd5b60405163d6bda27560e01b8152600490fd5b8151158062001e17575b62001df5575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b1562001dec56fe6080604052600436101561001b575b361561001957600080fd5b005b60003560e01c80630192a31e1461195357806301e1d1141461193857806301ffc9a7146118e2578063065e5360146118bc57806306fdde031461181457806307a2d13a146117ee578063095ea7b3146117365780630a28a4771461029c5780630db09f9114611712578063115c28ad146116ee5780631374df0b146116ca57806318160ddd146116ac5780631aedeabe146116875780631b71ff411461166357806323b872dd1461162b578063248a9ca3146115fc57806324ea54f4146115c15780632f2ff15d14611582578063313ce5671461154457806336568abe146114fd5780633b58b89e1461149257806346904840146114695780634a3a6b65146114405780634e9321e2146113ec5780635181d38f146113835780636e553f6514610b9f57806370a0823114610b655780637adbf97314610af55780637d7c2a1c14610abb5780637dc0d1d014610a925780638027586014610a3257806383451259146109ed5780638d73ea4c1461093c57806391d14854146108ef57806395d89b41146107fc5780639f40a7b314610764578063a217fddf14610748578063a318c1a41461067e578063a9059cbb1461064d578063b3035a0b146105d3578063b61d27f61461052a578063c6e6f5921461029c578063ca1123c2146104b1578063cbcbc7fd1461046c578063d547741f1461042d578063dd62ed3e146103dc578063ddca3f43146103b7578063e5df8b8414610381578063e74b981b14610300578063ee8c24b8146102a1578063ef8b30f71461029c5763f36c8f5c0361000e57346102975760003660031901126102975760206040517f35a7846a2a701fff6f9d61a46ebff5da578c5dcee8bdf361c569f9ea4ee647718152f35b600080fd5b611a42565b3461029757600036600319011261029757604080516102bf81611d90565b3690376102ca6121a8565b60405190600090825b600283106102e057604084f35b81516001600160a01b0316815260019290920191602091820191016102d3565b3461029757602036600319011261029757610319611a16565b610321612464565b6001600160a01b0316801561037057600a80546001600160a01b031916821790556040519081527fbf9a9534339a9d6b81696e05dcfb614b7dc518a31d48be3cfb757988381fb32390602090a1005b60405162de0e3560e11b8152600490fd5b3461029757602036600319011261029757600435600281101561029757600b01546040516001600160a01b039091168152602090f35b3461029757600036600319011261029757602061ffff60075460101c16604051908152f35b34610297576040366003190112610297576103f5611a16565b6103fd611a2c565b9060018060a01b038091166000526002602052604060002091166000526020526020604060002054604051908152f35b346102975760403660031901126102975761001960043561044c611a2c565b9080600052600660205261046760016040600020015461253a565b612857565b34610297576000366003190112610297576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346102975760203660031901126102975760043561ffff811690818103610297576104da612464565b6127108211610370577f51632c70eb300357eeb084d66c71fab660ab452e9be56eb1390ece79f8aa06e29160209163ffff00006007549160101b169063ffff0000191617600755604051908152a1005b60603660031901126102975761053e611a16565b6044356001600160401b039182821161029757366023830112156102975781600401359283116102975736602484840101116102975760246000939284936105846128ce565b61058c612464565b8060405193849301833781018481520391602435905af16105ab612434565b9060016000556105cf604051928392151583526040602084015260408301906119f1565b0390f35b346102975760203660031901126102975760043561ffff811690818103610297576105fc612464565b6127108211610370576007805465ffff000000001916602092831b65ffff00000000161790556040519182527f15d91b4d718db1855b9f7ecf5157156ed93b2d3c478384aa28f5457c6b84cea191a1005b3461029757604036600319011261029757610673610669611a16565b6024359033612722565b602060405160018152f35b346102975761068c36611a80565b916106989391936128ce565b6106a06121ff565b926106a96121a8565b906106e3826106dc60018060a01b03966106d388600a541661ffff60075460101c1690858c612bcc565b505050506125d8565b8097613d1f565b9081106107365760209561072994610720879460ff7f00000000000000000000000000000000000000000000000000000000000000001690612321565b51169333613eb2565b6001600055604051908152f35b604051632d65aa3b60e11b8152600490fd5b3461029757600036600319011261029757602060405160008152f35b346102975761077236611a80565b9161077e9391936128ce565b6107866121ff565b9161078f6121a8565b6107bf818360018060a01b03966107b688600a541661ffff60075460101c16908584612bcc565b50505050613d1f565b9485106107365760209561072994610720879360ff7f00000000000000000000000000000000000000000000000000000000000000001690612321565b346102975760003660031901126102975760405160006005549060018260011c91600184169182156108e5575b60209485851084146108cf5785879486865291826000146108af57505060011461086f575b5061085b92500383611dfd565b6105cf6040519282849384528301906119f1565b849150600560005281600020906000915b85831061089757505061085b93508201018561084e565b80548389018501528794508693909201918101610880565b60ff19168582015261085b95151560051b850101925087915061084e9050565b634e487b7160e01b600052602260045260246000fd5b92607f1692610829565b3461029757604036600319011261029757610908611a2c565b600435600052600660205260406000209060018060a01b0316600052602052602060ff604060002054166040519015158152f35b3461029757604036600319011261029757610955611a60565b61095d611a70565b6109656128ce565b61096d6124de565b8160020b918215610370578160020b9283156103705760407ff377d6a9f671aab6c79113d6ee02cf6ec5f8de70d8e6a14e8b899bbe4852969f916109e6956007548660581b62ffffff60581b169062ffffff851b87861b169065ffffffffffff861b1916171760075582519182526020820152a16134bf565b6001600055005b34610297576000366003190112610297576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610297576000366003190112610297576080610a5e610a506121ff565b610a586121a8565b90613b92565b909150600180841b03610a6f613c0c565b906020825192015192816040519516855216602084015260408301526060820152f35b34610297576000366003190112610297576008546040516001600160a01b039091168152602090f35b3461029757600036600319011261029757610ad46128ce565b610adc6124de565b6109e66007548060581c60020b9060401c60020b6134bf565b3461029757602036600319011261029757610b0e611a16565b610b16612464565b6001600160a01b0316801561037057600880546001600160a01b031916821790556040519081527f3f32684a32a11dabdbb8c0177de80aa3ae36a004d75210335b49e544e48cd0aa90602090a1005b34610297576020366003190112610297576001600160a01b03610b86611a16565b1660005260016020526020604060002054604051908152f35b604036600319011261029757610bb3611a2c565b600160ff196007541617600755610bc86128ce565b610bd0612290565b90610bd96121a8565b610bf960018060a01b03600a541661ffff60075460101c16908386612bcc565b50505050610c086004356125d8565b926001600160a01b03610c3e7f000000000000000000000000000000000000000000000000000000000000000060ff1684612321565b51168061131d5750600435340361130b575b610c6561ffff60075460201c16600435612d0e565b91610c6f82612332565b5151906020610c7d84612332565b5101516008546001600160a01b03169290600290810b907f000000000000000000000000000000000000000000000000000000000000000010156112f5577f0000000000000000000000000000000000000000000000000000000000000000600b8101546001600160a01b03169190610cf590612ead565b60028110156112f557610d6f9388610d509260018060a01b0390600b01541693610d1d611e1e565b610d256121a8565b9360020b907f00000000000000000000000000000000000000000000000000000000000000006142f0565b9060405192610d5e84611dab565b8352602083015260408201526146e7565b6004610d7b8288612353565b600c5460405163313ce56760e01b81529196919260209184919082906001600160a01b03165afa918215611177576000926112b9575b50600b546001600160a01b03168061125157506012905b6040516350d25bcd60e01b815291602083600481855afa9283156111775760009361121b575b50610e06600493610e0060209361256e565b9061257f565b916040519384809263313ce56760e01b82525afa918215611177576000926111da575b50610e36610e3c9261256e565b90612592565b7f000000000000000000000000000000000000000000000000000000000000000060ff166111c25790610e36610e75610e7b938661257f565b9161256e565b935b610e9b60075495610e9561ffff8860301c168a612d0e565b926125b2565b106111b057610f73937f000000000000000000000000000000000000000000000000000000000000000060ff1661119e5760ff83915b60081c1690818082111561119457610ee891612353565b905b7f000000000000000000000000000000000000000000000000000000000000000060ff1661118d57610f1c8389612353565b905b8082111561118357610f2f91612353565b905b84516020860151604051638e56c1c160e01b81526001600160a01b039283166004820152911660248201526101a460448201529560a090879081906064820190565b0381600180851b037f0000000000000000000000000000000000000000000000000000000000000000165afa95861561117757600096611140575b5094516001600160801b0395610ff692918716610fda6020610fcf8b612332565b51015160020b612ebe565b610ff0610fe68b612332565b515160020b612ebe565b9161322e565b9384166110b5575b50505050505060018060a01b031690811561109c57602091611022826003546125b2565b60035580600052600183526040600020828154019055806000600080516020614caf83398151915285604051868152a3604051600435815282848201527fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d760403392a3600160005560ff1960075416600755604051908152f35b60405163ec442f0560e01b815260006004820152602490fd5b6111239560206110d26110c788612332565b515160020b97612332565b510151935160029490940b936001600160a01b0316611135577f000000000000000000000000000000000000000000000000000000000000000060ff1661112e5761111d9250612353565b92613361565b828080808080610ffe565b505061111d565b505050600092613361565b610ff6929196506111689060a03d60a011611170575b6111608183611dfd565b81019061239e565b959091610fae565b503d611156565b6040513d6000823e3d90fd5b5050600090610f31565b8390610f1e565b5050600090610eea565b60ff6111aa8389612353565b91610ed1565b60405163e472516760e01b8152600490fd5b6111ce6111d49261256e565b84612e37565b93610e7d565b91506020823d602011611213575b816111f560209383611dfd565b8101031261029757610e3661120c610e3c93612560565b9250610e29565b3d91506111e8565b92506020833d602011611249575b8161123660209383611dfd565b8101031261029757915191610e06610dee565b3d9150611229565b60206004916040519283809263313ce56760e01b82525afa9081156111775760009161127f575b5090610dc8565b90506020813d6020116112b1575b8161129a60209383611dfd565b81010312610297576112ab90612560565b8b611278565b3d915061128d565b9091506020813d6020116112ed575b816112d560209383611dfd565b81010312610297576112e690612560565b908a610db1565b3d91506112c8565b634e487b7160e01b600052603260045260246000fd5b604051635f97a42560e11b8152600490fd5b6040516323b872dd60e01b602082015233602482015230604482015260043560648201526064815260a08101918183106001600160401b0384111761136d5761136892604052614a53565b610c50565b634e487b7160e01b600052604160045260246000fd5b346102975760003660031901126102975761139c6121ff565b6040516020918282018383528151809152836040840192019360005b8281106113c55784840385f35b85518051600290810b865290830151900b84830152948101946040909301926001016113b8565b3461029757604036600319011261029757606061142061140a611a60565b611412611a70565b61141a6121a8565b91612aa3565b6040519260018060801b0392838092168552166020840152166040820152f35b34610297576000366003190112610297576114596128ce565b6114616124de565b6109e66128f1565b3461029757600036600319011261029757600a546040516001600160a01b039091168152602090f35b346102975760203660031901126102975760043560ff811690818103610297577fa01055c07e9a8558cde074fef9285f3ec21371ba0fe0caaf5a49bd704a09c3c0916020916114df612464565b61ff006007549160081b169061ff00191617600755604051908152a1005b3461029757604036600319011261029757611516611a2c565b336001600160a01b038216036115325761001990600435612857565b60405163334bd91960e11b8152600490fd5b3461029757600036600319011261029757602060405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610297576040366003190112610297576100196004356115a1611a2c565b908060005260066020526115bc60016040600020015461253a565b6127d7565b346102975760003660031901126102975760206040517f8b5b16d04624687fcf0d0228f19993c9157c1ed07b41d8d430fd9100eb099fe88152f35b346102975760203660031901126102975760043560005260066020526020600160406000200154604051908152f35b3461029757606036600319011261029757610673611647611a16565b61164f611a2c565b6044359161165e83338361264f565b612722565b3461029757600036600319011261029757602060075460401c60020b604051908152f35b3461029757600036600319011261029757602061ffff60075460301c16604051908152f35b34610297576000366003190112610297576020600354604051908152f35b3461029757600036600319011261029757602060ff60075460081c16604051908152f35b3461029757600036600319011261029757602060075460581c60020b604051908152f35b3461029757600036600319011261029757602060075461ffff60405191831c168152f35b346102975760403660031901126102975761174f611a16565b6024359033156117d5576001600160a01b03169081156117bc57336000526002602052604060002082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b604051634a1406b160e11b815260006004820152602490fd5b60405163e602df0560e01b815260006004820152602490fd5b3461029757602036600319011261029757602061180c6004356125bf565b604051908152f35b346102975760003660031901126102975760405160006004549060018260011c91600184169182156118b2575b60209485851084146108cf5785879486865291826000146108af575050600114611872575061085b92500383611dfd565b849150600460005281600020906000915b85831061189a57505061085b93508201018561084e565b80548389018501528794508693909201918101611883565b92607f1692611841565b346102975760003660031901126102975760206118d7611e1e565b6040519060020b8152f35b346102975760203660031901126102975760043563ffffffff60e01b811680910361029757602090637965db0b60e01b8114908115611927575b506040519015158152f35b6301ffc9a760e01b1490508261191c565b3461029757600036600319011261029757602061180c611ab9565b346102975760203660031901126102975760043561ffff8116908181036102975761197c612464565b6127108211610370577f86859aa19974f9f3f3d9843f10b1b02adb9d30ca2f4e8d4d4d875a4baf2166379160209161ffff60301b6007549160301b169061ffff60301b191617600755604051908152a1005b60005b8381106119e15750506000910152565b81810151838201526020016119d1565b90602091611a0a815180928185528580860191016119ce565b601f01601f1916010190565b600435906001600160a01b038216820361029757565b602435906001600160a01b038216820361029757565b3461029757602036600319011261029757602061180c6004356125d8565b600435908160020b820361029757565b602435908160020b820361029757565b608090600319011261029757600435906001600160a01b0390602435828116810361029757916044359081168103610297579060643590565b600c546040805163313ce56760e01b8082526001600160a01b03937f000000000000000000000000000000000000000000000000000000000000000060ff1615936020939290918490849060049082908a165afa928315611d8557600093611d4e575b50600b5460009087168581611ce55750505060125b611b39613c0c565b9480865196015197600854169184516350d25bcd60e01b81528281600481875afa908115611cda57908391600091611ca9575b50610e00611b7a929361256e565b93600486518095819382525afa938415611c9f5750600093611c64575b5050610e36611ba59261256e565b91611bb1610a50612290565b9391509385600014611c5d5786915b8615611c3657611be792611be190610e75906001600160801b0388166125b2565b91612e37565b945b8415611c2e5750925b15611c165750611c1392611c0e916001600160801b03166125b2565b6125b2565b90565b611c1393611c0e9250906001600160801b03166125b2565b905092611bf2565b611c5792611c5190610e75906001600160801b0389166125b2565b90612e37565b94611be9565b8291611bc0565b90809350813d8311611c98575b611c7b8183611dfd565b8101031261029757610e36611c92611ba593612560565b92611b97565b503d611c71565b513d6000823e3d90fd5b82819392503d8311611cd3575b611cc08183611dfd565b8101031261029757518290610e00611b6c565b503d611cb6565b86513d6000823e3d90fd5b6004918551928380928782525afa918215611d43578092611d08575b5050611b31565b9091508582813d8311611d3c575b611d208183611dfd565b81010312611d395750611d3290612560565b3880611d01565b80fd5b503d611d16565b8451903d90823e3d90fd5b9092508381813d8311611d7e575b611d668183611dfd565b8101031261029757611d7790612560565b9138611b1c565b503d611d5c565b82513d6000823e3d90fd5b604081019081106001600160401b0382111761136d57604052565b606081019081106001600160401b0382111761136d57604052565b60e081019081106001600160401b0382111761136d57604052565b61018081019081106001600160401b0382111761136d57604052565b90601f801991011681019081106001600160401b0382111761136d57604052565b600b54600c546001600160a01b03918216919081168080841161219f575b50818116828416101561029757604080516001600160a01b03948516602080830191825293909516918101919091526101a4606080830191909152815290928391611e88608082611dfd565b5190206040518281019182526201000f604082015260408152611eaa81611dab565b5190206024604051809481936302ce8af360e01b835260048301527f0000000000000000000000000000000000000000000000000000000000000000165afa91821561117757600092612171575b506001600160801b039180831691506201000282101580612158575b1561029757600160401b600160c01b039060401b168083811160071b9181831c926001600160401b03841160061b93841c9363ffffffff851160051b94851c9461ffff861160041b95861c60ff9687821160031b91821c92600f841160021b93841c94600160038711811b96871c11961717171717171791608083101560001461214c5750607e1982011c5b8002607f928392828493841c81841c1c800280851c81851c1c800280861c81861c1c800280871c81871c1c80029081881c82881c1c80029283891c84891c1c800294858a1c868a1c1c800296878b1c888b1c1c800298898c1c8a8c1c1c80029a8b8d1c8c821c1c8002809d1c8d821c1c8002809e81901c90821c1c80029e8f80911c911c1c800260cd1c6604000000000000169d60cc1c6608000000000000169c60cb1c6610000000000000169b60ca1c6620000000000000169a60c91c6640000000000000169960c81c66800000000000001698600160381b9060c71c1697600160391b9060c61c16966001603a1b9060c51c16956001603b1b9060c41c16946001603c1b9060c31c16936001603d1b9060c21c16926001603e1b9060c11c16916001603f1b9060c01c1690607f190160401b1717171717171717171717171717693627a301d71055774c8502906f028f6481ab7f045a5af012a19d003aa919820160801d60020b916fdb2df09e81959a81455e260799a0632f0160801d60020b92838314600014612134575050905090565b61213d84612ebe565b1611612147575090565b905090565b905081607f031b611fa0565b506f0ffff5433e2b3d8211706e6102aa94728210611f14565b90809250813d8311612198575b6121888183611dfd565b8101031261029757513880611ef8565b503d61217e565b92905038611e3c565b60405190600b6000835b600282106121c8575050506121c682611d90565b565b82546001600160a01b0316815260019283019291909101906020016121b2565b6001600160401b03811161136d5760051b60200190565b6009549061220c826121e8565b91604061221c6040519485611dfd565b81845260096000908152906020907f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af908287015b85851061225f57505050505050565b6001848192845161226f81611d90565b865460029080820b835260181c900b83820152815201930194019391612250565b6009549061229d826121e8565b9160406122ad6040519485611dfd565b81845260096000908152906020907f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af908287015b8585106122f057505050505050565b6001848192845161230081611d90565b865460029080820b835260181c900b838201528152019301940193916122e1565b9060028110156112f55760051b0190565b8051156112f55760200190565b80518210156112f55760209160051b010190565b9190820391821161236057565b634e487b7160e01b600052601160045260246000fd5b51906001600160801b038216820361029757565b51906001600160401b038216820361029757565b908160a0910312610297576040519060a082018281106001600160401b0382111761136d57612411916080916040526123d681612376565b84526123e460208201612376565b60208501526123f560408201612376565b60408501526124066060820161238a565b60608501520161238a565b608082015290565b6001600160401b03811161136d57601f01601f191660200190565b3d1561245f573d9061244582612419565b916124536040519384611dfd565b82523d6000602084013e565b606090565b3360009081527fab4ab2000706c1edca36921176badacea74d146983214a5caf9b3c51b4b3435660205260409020547f35a7846a2a701fff6f9d61a46ebff5da578c5dcee8bdf361c569f9ea4ee647719060ff16156124c05750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b3360009081527fba39d2e119d4075e56dadcfd5cd5b862305d2c4d32649e4866948958647d49cf60205260409020547f8b5b16d04624687fcf0d0228f19993c9157c1ed07b41d8d430fd9100eb099fe89060ff16156124c05750565b80600052600660205260406000203360005260205260ff60406000205416156124c05750565b519060ff8216820361029757565b60ff16604d811161236057600a0a90565b8181029291811591840414171561236057565b811561259c570490565b634e487b7160e01b600052601260045260246000fd5b9190820180921161236057565b60035480156125d457611c1391611c51611ab9565b5090565b60035480156125d4576125e9611ab9565b907f000000000000000000000000000000000000000000000000000000000000000060028110156112f557600b01546001600160a01b03161580612643575b61263557611c1392612e37565b611be183611c139493612353565b5060ff60075416612628565b9160018060a01b03809316916000938385526002602052604093848620918316918287526020528486205492600019840361268e575b50505050505050565b8484106126f2575080156126da5781156126c257855260026020528385209085526020520391205538808080808080612685565b8451634a1406b160e11b815260048101879052602490fd5b845163e602df0560e01b815260048101879052602490fd5b8551637dc7a0d960e11b81526001600160a01b039190911660048201526024810184905260448101859052606490fd5b916001600160a01b038084169283156127be571692831561109c57600090838252600160205260408220549083821061278c57509160408282600080516020614caf83398151915295876020965260018652038282205586815220818154019055604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101839052606490fd5b604051634b637e8f60e11b815260006004820152602490fd5b906000918083526006602052604083209160018060a01b03169182845260205260ff604084205416156000146128525780835260066020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b906000918083526006602052604083209160018060a01b03169182845260205260ff604084205416600014612852578083526006602052604083208284526020526040832060ff1981541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4600190565b6002600054146128df576002600055565b604051633ee5aeb560e01b8152600490fd5b600b54600c54604051638e56c1c160e01b81526001600160a01b03928316600482015290821660248201526101a460448201529060a0826064817f000000000000000000000000000000000000000000000000000000000000000085165afa91821561117757600092612a82575b50612968612290565b906009549260005b84811061297e575050505050565b8151600191906001600160801b03908116612999838861233f565b5151600292602090816129ac878c61233f565b510151850b9389612a1b6129be613c0c565b926129c76121a8565b966129de6129d660009a612ebe565b918b0b612ebe565b8588015160075460081c60ff1692908380821115612a79576129ff91612353565b925b87519080821115612a7057612a1591612353565b9361322e565b94511615612a67575b508216612a36575b5050505001612970565b612a5e93612a44868b61233f565b5151810b91612a53878c61233f565b510151900b90613361565b38808080612a2c565b51935038612a24565b50508a9361322e565b50508a92612a01565b612a9c91925060a03d60a011611170576111608183611dfd565b903861295f565b825160209093015160405163d7fd8d0f60e01b81523060048201526001600160a01b03948516602482015290841660448201526101a46064820152600292830b6084820152910b60a482015290606090829060c49082907f0000000000000000000000000000000000000000000000000000000000000000165afa9081156111775760009182918391612b37575b50909192565b929150506060823d606011612b87575b81612b5460609383611dfd565b81010312611d395750612b6681612376565b612b7e6040612b7760208501612376565b9301612376565b90919038612b31565b3d9150612b47565b600f91820b910b019060016001607f1b0319821260016001607f1b0383131761236057565b600f0b60016001607f1b031981146123605760000390565b909193600094600093849585809560095482915b818310612cbe575050508089600f0b12612c43575b87600f0b12612c0357505050565b9193506121c691612c2b9061ffff6001600160801b03612c228a612bb4565b16911690612d0e565b602090910151909384916001600160a01b031661428f565b9550612c656001600160801b03612c598a612bb4565b1661ffff831690612d0e565b95808760018060a01b0386818751168015600014612cac575050828092819282908215612ca2575b8a1690f1612bf5575b604051903d90823e3d90fd5b6108fc9150612c8d565b909150612cb9935061428f565b612bf5565b9091999a612d05600191612cff612cf6898f612cda818961233f565b51516020612cea6002938b61233f565b510151820b910b61402c565b93909150612b8f565b9d612b8f565b9a019190612be0565b908082029060001981840990828083109203918083039214612d7f576127109082821115612d6c577fbc01a36e2eb1c432ca57a786c226809d495182a9930be0ded288ce703afb7e91940990828211900360fc1b910360041c170290565b634e487b7160005260116020526024601cfd5b505061271091500490565b90670de0b6b3a7640000808302919060001981850993838086109503948086039514612e2a5784831115612e0a579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b82612e235760125b634e487b716000526020526024601cfd5b6011612e12565b505090611c139250612592565b918183029160001981850993838086109503948086039514612e2a5784831115612e0a579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b60ff166001039060ff821161236057565b60020b620a276d1981121580613221575b1561029757600081121561321b5780600003905b6001821615613211576ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b031691600281166131f5575b600481166131d9575b600881166131bd575b601081166131a1575b60208116613185575b60408116613169575b60809081811661314e575b6101008116613133575b6102008116613118575b61040081166130fd575b61080081166130e2575b61100081166130c7575b61200081166130ac575b6140008116613091575b6180008116613076575b62010000811661305b575b620200008116613041575b620400008116613027575b620800001661300c575b50600012612ffd575b6001600160401b038116612ff5576000905b60401c60ff91909116016001600160801b031690565b600190612fdf565b801561259c5760001904612fcd565b6b048a170391f7dc42444e8fa26000929302901c9190612fc4565b6d2216e584f5fa1ea926041bedfe98909302811c92612fba565b926e5d6af8dedb81196699c329225ee60402811c92612faf565b926f09aa508b5b7a84e1c677de54f3e99bc902811c92612fa4565b926f31be135f97d08fd981231505542fcfa602811c92612f99565b926f70d869a156d2a1b890bb3df62baf32f702811c92612f8f565b926fa9f746462d870fdf8a65dc1f90e061e502811c92612f85565b926fd097f3bdfd2022b8845ad8f792aa582502811c92612f7b565b926fe7159475a2c29b7443b29c7fa6e889d902811c92612f71565b926ff3392b0822b70005940c7a398e4b70f302811c92612f67565b926ff987a7253ac413176f2b074cf7815e5402811c92612f5d565b926ffcbe86c7900a88aedcffc83b479aa3a402811c92612f53565b926ffe5dee046a99a2a811c461f1969c305302811c92612f49565b916fff2ea16466c96a3843ec78b326b528610260801c91612f3e565b916fff973b41fa98c081472e6896dfb254c00260801c91612f35565b916fffcb9843d60f6159c9db58835c9266440260801c91612f2c565b916fffe5caca7e10e4e61c3624eaa0941cd00260801c91612f23565b916ffff2e50f5f656932ef12357cf3c7fdcc0260801c91612f1a565b916ffff97272373d413259a46990580e213a0260801c91612f11565b600160801b612efe565b80612ee3565b50620cb14a811315612ecf565b929390926001600160801b039190838316838616116132fb575b808316858416811161327b57505050831692830361029757610800600160801b03926132779290600090614ad9565b1690565b83859693959792949716116000146132d55785811690810361029757610800600160801b039485916132b291908590600090614ad9565b169483169283036102975760016132c893614ad9565b1680821015612147575090565b509291809491501692830361029757610800600160801b03926132779290600190614ad9565b939293613248565b602081830312610297578051906001600160401b038211610297570181601f8201121561029757805161333581612419565b926133436040519485611dfd565b8184526020828401011161029757611c1391602080850191016119ce565b600b54600c546007546001600160a01b03928316956001600160801b039593949285169390861660209290921c61ffff1691909102808616929190830361236057604051936001602086015287604086015260608501526101a4608085015260020b60a084015260020b60c0830152612710610800600160801b0391041660e0820152600094859384610100840152610120830152836101408301526101608481840152825261341082611de1565b8394156134a6575b50906134499160405194858094819363a15112f960e01b8352608060048401526040602484015260448301906119f1565b03927f0000000000000000000000000000000000000000000000000000000000000000165af1801561349b5761347d575050565b613498913d8091833e6134908183611dfd565b810190613303565b50565b6040513d84823e3d90fd5b9350613449613418565b519061ffff8216820361029757565b9060018060a01b039182600b54169280600c541693604091825193633fc58f8560e21b85526004928386015260249660248601526101a4604486015260e085606481857f0000000000000000000000000000000000000000000000000000000000000000165afa8015613b6e57600090613ac4575b6060015160019761ffff918216890b96509061354e612290565b9061357061355a6121a8565b9186600a54169060075460101c16908385612bcc565b505050508151918a60005b848110613a635750505050508260085416926135956121a8565b93818551168660009180156000146139f0575050506012915b602080960151168751928684898163313ce56760e01b958682525afa9384156139e5576000946139ae575b5088516350d25bcd60e01b815287818a81875afa9081156139a357908891600091613972575b50610e0061360d929361256e565b91888a518095819382525afa9182156139675760009261392b575b50610e366136359261256e565b9060ff613640613c0c565b9161365a613651858986015161257f565b610e368361256e565b613662611e1e565b9351109389519061367282611dc6565b81528781019b600297880b8d528a820190880b815260608201918c835284608082019416845260a0810195890b865260c0810196875260248c519e8f92630377eb8760e21b8452518d840152518a0b91015251870b60448d015251860b60648c0152511660848a015251830b60a489015251151560c488015260008760e48173434b096c9fc3f316490f8b07d7d9b34a2ef39cb65af49586156139205760009788976138bc575b50875190875182036138ad5760005b828110613835575050506009918254600084558061380d575b5087519760005b8981106137625750505050505050505050506121c66128f1565b61376c818361233f565b51830b613779828b61233f565b51840b89519161378883611d90565b82528782019081528654600160401b8110156137f9578d81018089558110156137e557908d93929188600052896000200191519062ffffff8354915160181b65ffffff0000001692169065ffffffffffff19161717905501613748565b8660328b634e487b7160e01b600052526000fd5b8660418b634e487b7160e01b600052526000fd5b836000528985600020918201915b828110613829575050613741565b60008155018a9061381b565b61383f818b61233f565b51850b8261384d838c61233f565b51870b808312928315613895575b508215613880575b5050613870578a01613728565b87516309aab2bb60e41b81528790fd5b61388a9250614c17565b850b15158238613863565b6138a29193508290614c17565b870b1515913861385b565b865162de0e3560e11b81528690fd5b9096503d8089833e6138ce8183611dfd565b810190868183031261391c578051906001600160401b039182811161391857836138f99183016149e8565b9986820151928311611d3957506139119291016149e8565b9538613719565b8a80fd5b8880fd5b85513d6000823e3d90fd5b91508582813d8311613960575b6139428183611dfd565b8101031261029757610e3661395961363593612560565b9250613628565b503d613938565b88513d6000823e3d90fd5b82819392503d831161399c575b6139898183611dfd565b8101031261029757518790610e006135ff565b503d61397f565b8a513d6000823e3d90fd5b9093508681813d83116139de575b6139c68183611dfd565b81010312610297576139d790612560565b92386135d9565b503d6139bc565b89513d6000823e3d90fd5b6020908a519283809263313ce56760e01b82525afa918215613a58578092613a1b575b5050916135ae565b9091506020823d602011613a50575b81613a3760209383611dfd565b81010312611d395750613a4990612560565b3880613a13565b3d9150613a2a565b8951903d90823e3d90fd5b613abc84613a71838661233f565b5151600290613a958360209283613a88898c61233f565b510151850b90850b612aa3565b505091613aa2868961233f565b5151810b91613ab1878a61233f565b510151900b90614b50565b018b9061357b565b5060e0853d60e011613b66575b81613ade60e09383611dfd565b8101031261029757606094613b5c60c0865192613afa84611dc6565b613b0381612560565b8452613b11602082016134b0565b6020850152613b21888201612560565b88850152613b308982016134b0565b89850152613b4060808201612560565b6080850152613b5160a08201612560565b60a085015201612560565b60c0820152613534565b3d9150613ad1565b84513d6000823e3d90fd5b6001600160801b03918216908216019190821161236057565b906000926000926000928151906000925b828410613bb05750505050565b909192949596613c02613bf6613bfc600193613bed878b613bd1818a61233f565b51516020613be16002938c61233f565b510151820b910b612aa3565b94919092613b79565b9b613b79565b98613b79565b9501929190613ba3565b6040808051613c1a81611d90565b369037805190613c2982611d90565b600b546001600160a01b0390600090821680613cb15750506020602491475b8552600c54168351928380926370a0823160e01b82523060048301525afa918215611c9f5750600091613c7f575b50602082015290565b90506020813d602011613ca9575b81613c9a60209383611dfd565b81010312610297575138613c76565b3d9150613c8d565b60206024918551928380926370a0823160e01b82523060048301525afa918215611d43578092613ce9575b5050602491602091613c48565b9091506020823d602011613d17575b81613d0560209383611dfd565b81010312611d39575051816020613cdc565b3d9150613cf8565b90613d28613c0c565b928351926020809501519160039360035492613d50613d4885848a612e37565b948387612e37565b9581519260009160005b858110613e235750505050505050613d929291613d8c611c0e92611c0e613d7f613c0c565b9789895199015198612353565b94612353565b7f000000000000000000000000000000000000000000000000000000000000000060ff16613dfa57600c54600b54604051611c1395613df494919391926001600160a01b039081169216613de585611dab565b845283015260408201526146e7565b506125b2565b90611c1392613df49160018060a01b039182600b541692600c54169060405193613de585611dab565b8b613e4e88613e32848961233f565b5151600293613e41868b61233f565b510151840b90840b612aa3565b505083546001600160801b039291613e6a919087908516612e37565b91808311613e9e578e8493613e98938c93613e876001988d61233f565b5151820b921692613ab1878d61233f565b01613d5a565b634e487b7160e01b87526001600452602487fd5b6001600160a01b03808216968185169493919287868a0361400d575b505084156127be5760009085825260016020526040948583205490898210613fdc5750908885928885526001602052038684205588600354036003558287600080516020614caf833981519152602089518d8152a31680613fa057508080878015613f96575b82809291819288881690f115613f8b57509160a09593917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db9795935b825196875216602086015284015260608301526080820152a1565b8351903d90823e3d90fd5b6108fc9150613f34565b60a0979593915091613fd787827ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db9b99979561428f565b613f70565b865163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101899052606490fd5b614017918661264f565b3887613ece565b519081600f0b820361029757565b92919061403a828286612aa3565b50909490506001600160801b0385161561427f57906140fe929160018060a01b03835116916000602085019360018060a01b038551166040519160026020840152604083015260608201526101a460808201528260020b60a08201528360020b60c08201528160e08201528161010082015260018060801b03610120820152816101408201528161016082015261016081526140d581611de1565b6040518097819263a15112f960e01b8352608060048401526040602484015260448301906119f1565b0381837f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af1938415611177576141e295600095614265575b5051925160408051600560208201526001600160a01b0395861691810191909152931660608401526101a46080840152600290810b60a08401520b60c082015260e0810182905261010081018290526001600160801b03610120820152610140810182905261016080820183905281526141b981611de1565b6040518093819263a15112f960e01b8352608060048401526040602484015260448301906119f1565b0381837f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af19081156111775760009161424a575b5060408180518101031261029757614246604061423f6020840161401e565b920161401e565b9091565b61425f91503d806000833e6134908183611dfd565b38614220565b614278903d8088833e6134908183611dfd565b5038614140565b5050509050600090600090600090565b60405163a9059cbb60e01b60208201526001600160a01b03909216602483015260448083019390935291815260808101916001600160401b0383118284101761136d576121c692604052614a53565b60ff60129116019060ff821161236057565b9195949060020b8660020b81136146d5578360020b136146bb5780516000966001600160a01b0393918416806146445750602096975083876012945b0151166040519788809263313ce56760e01b825260049a8b915afa9081156111775760009161460a575b5084600b54169460a081600c54169660648b6040519485938492638e56c1c160e01b845283015260249a8b8301526101a460448301527f0000000000000000000000000000000000000000000000000000000000000000165afa908115611177576000916145eb575b50516001600160801b03908116906143ef6143e66143dd848061257f565b610e008661256e565b60801c98612ebe565b916143f98761256e565b9282841693840361029757610800600160801b0393614429918591614422918591600190614ad9565b1695612ebe565b906144338561256e565b92831692830361029757600061444893614ad9565b169260009060ff166144d15750509061446091612d8a565b91670de0b6b3a764000095868602958087048814901517156144be575050916144af6144b49285611be161449f61449a6144ba99986142de565b61256e565b6144a9868561257f565b906125b2565b61257f565b90612353565b0490565b601190634e487b7160e01b600052526000fd5b9394989792916144e96144ef929888611be18961256e565b92612d8a565b60ff85168060120160ff81116145d95761450b6145119161256e565b8461257f565b9061452761452161449a8b6142de565b8961257f565b9060ff8a160160ff81116145c7576145509392916144a961454a611be19361256e565b8561257f565b670de0b6b3a764000096878302928084048914901517156145b557916144b461457f92610e006145859561256e565b9361256e565b938581029581870414901517156145a3575050611c13939450612e37565b634e487b7160e01b8252601190528590fd5b634e487b7160e01b8552601184528985fd5b634e487b7160e01b8752601186528b87fd5b634e487b7160e01b8652601185528a86fd5b614604915060a03d60a011611170576111608183611dfd565b386143bf565b906020823d60201161463c575b8161462460209383611dfd565b81010312611d39575061463690612560565b38614356565b3d9150614617565b60206004916040519283809263313ce56760e01b82525afa988915612c96578099614678575b50508360208098999461432c565b9098506020893d6020116146b3575b8161469460209383611dfd565b81010312611d3957508360206146ab81999a612560565b99985061466a565b3d9150614687565b50611c1393945060ff91506146cf90612ead565b1661257f565b5050611c1393945060ff91501661257f565b9060408083018051156149dc578351602080860180519194926001600160a01b0392831691908316828110156149d45760015b614722613c0c565b93858b511686600b5416146000146149c85788855195015194975b516001600160801b038082169190818303610297578b9385156149bd57896f0ffff5433e2b3d8211706e6102aa9471915b818d51991680978a0152168b8801526101a4938460608901528615158060808a015260a089015260c0880152600060e0880152166101008601526000610120860152610140600081870152855261016092838601948686106001600160401b0387111761136d5760009386938492838e528694816149b4575b506149ac575b5063a15112f960e01b825260016101648901528b6101848901528761481861015f19928201826119f1565b0301918a7f0000000000000000000000000000000000000000000000000000000000000000165af180156149a15790869493929161497b575b5050505116856000918015600014614902575050506148709047612353565b9551600091168061488a57505050611c1391504790612353565b90846024928451938480926370a0823160e01b82523060048301525afa9283156148f8575080926148c3575b5050611c13925090612353565b9150919282813d83116148f1575b6148db8183611dfd565b81010312611d39575090611c13915138806148b6565b503d6148d1565b51903d90823e3d90fd5b85516370a0823160e01b81523060048201529190829060249082905afa91821561497057809261493e575b50509061493991612353565b614870565b9091508682813d8311614969575b6149568183611dfd565b81010312611d395750516149393861492d565b503d61494c565b8551903d90823e3d90fd5b614998923d90816000853e6149908285611dfd565b010190613303565b50388080614851565b87513d6000823e3d90fd5b9250386147ed565b905015386147e7565b89620100029161476e565b8451948901519761473d565b91600061471a565b50509050600090600090565b9080601f8301121561029757815190602091614a03816121e8565b93614a116040519586611dfd565b81855260208086019260051b82010192831161029757602001905b828210614a3a575050505090565b81518060020b8103610297578152908301908301614a2c565b60018060a01b031690614a7d600080836020829551910182875af1614a76612434565b9084614c4b565b908151918215159283614aad575b505050614a955750565b60249060405190635274afe760e01b82526004820152fd5b819293509060209181010312614ad5576020015190811591821503611d395750388080614a8b565b5080fd5b9190614afd57916001614af7614af1611c1395614c29565b92614c29565b92614ad9565b6001600160801b039283918291908183168184161115614b485703165b1690811561259c5760401b600160401b600160c01b031604908116906001600160c01b031681036102975790565b900316614b1a565b9092916001600160801b039182821615614c105760018060a01b039485602081875116960151166040519560026020880152604087015260608601526101a4608086015260020b60a085015260020b60c0840152610800600160801b031660e08301526134496000938385949385610100819601526101208201528361014082015261016084818301528152614be581611de1565b60405194858094819363a15112f960e01b8352608060048401526040602484015260448301906119f1565b5050505050565b9060020b90811561259c5760020b0790565b6001600160801b03908116801561259c57600160801b04818111610297571690565b90614c725750805115614c6057805190602001fd5b60405163d6bda27560e01b8152600490fd5b81511580614ca5575b614c83575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b15614c7b56feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000817000a35a7846a2a701fff6f9d61a46ebff5da578c5dcee8bdf361c569f9ea4ee6477100000000000000000000000000000000000000000000000000000000000005dc0000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000001a00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000000000000000002710000000000000000000000000000000000000000000000000000000000000251c0000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006efdbff2a14a7c8e15944d1f4a48f9f95f663a40000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a7410600000000000000000000000068b9e8b700f19b879b90e8485a00dd7a3044a214000000000000000000000000000000000000000000000000000000000000002154454d504553542053594d204554482d55534443204c502045544820417373657400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001854454d504553545f53594d5f4554485f555344435f4554480000000000000000

Deployed Bytecode

0x6080604052600436101561001b575b361561001957600080fd5b005b60003560e01c80630192a31e1461195357806301e1d1141461193857806301ffc9a7146118e2578063065e5360146118bc57806306fdde031461181457806307a2d13a146117ee578063095ea7b3146117365780630a28a4771461029c5780630db09f9114611712578063115c28ad146116ee5780631374df0b146116ca57806318160ddd146116ac5780631aedeabe146116875780631b71ff411461166357806323b872dd1461162b578063248a9ca3146115fc57806324ea54f4146115c15780632f2ff15d14611582578063313ce5671461154457806336568abe146114fd5780633b58b89e1461149257806346904840146114695780634a3a6b65146114405780634e9321e2146113ec5780635181d38f146113835780636e553f6514610b9f57806370a0823114610b655780637adbf97314610af55780637d7c2a1c14610abb5780637dc0d1d014610a925780638027586014610a3257806383451259146109ed5780638d73ea4c1461093c57806391d14854146108ef57806395d89b41146107fc5780639f40a7b314610764578063a217fddf14610748578063a318c1a41461067e578063a9059cbb1461064d578063b3035a0b146105d3578063b61d27f61461052a578063c6e6f5921461029c578063ca1123c2146104b1578063cbcbc7fd1461046c578063d547741f1461042d578063dd62ed3e146103dc578063ddca3f43146103b7578063e5df8b8414610381578063e74b981b14610300578063ee8c24b8146102a1578063ef8b30f71461029c5763f36c8f5c0361000e57346102975760003660031901126102975760206040517f35a7846a2a701fff6f9d61a46ebff5da578c5dcee8bdf361c569f9ea4ee647718152f35b600080fd5b611a42565b3461029757600036600319011261029757604080516102bf81611d90565b3690376102ca6121a8565b60405190600090825b600283106102e057604084f35b81516001600160a01b0316815260019290920191602091820191016102d3565b3461029757602036600319011261029757610319611a16565b610321612464565b6001600160a01b0316801561037057600a80546001600160a01b031916821790556040519081527fbf9a9534339a9d6b81696e05dcfb614b7dc518a31d48be3cfb757988381fb32390602090a1005b60405162de0e3560e11b8152600490fd5b3461029757602036600319011261029757600435600281101561029757600b01546040516001600160a01b039091168152602090f35b3461029757600036600319011261029757602061ffff60075460101c16604051908152f35b34610297576040366003190112610297576103f5611a16565b6103fd611a2c565b9060018060a01b038091166000526002602052604060002091166000526020526020604060002054604051908152f35b346102975760403660031901126102975761001960043561044c611a2c565b9080600052600660205261046760016040600020015461253a565b612857565b34610297576000366003190112610297576040517f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf6001600160a01b03168152602090f35b346102975760203660031901126102975760043561ffff811690818103610297576104da612464565b6127108211610370577f51632c70eb300357eeb084d66c71fab660ab452e9be56eb1390ece79f8aa06e29160209163ffff00006007549160101b169063ffff0000191617600755604051908152a1005b60603660031901126102975761053e611a16565b6044356001600160401b039182821161029757366023830112156102975781600401359283116102975736602484840101116102975760246000939284936105846128ce565b61058c612464565b8060405193849301833781018481520391602435905af16105ab612434565b9060016000556105cf604051928392151583526040602084015260408301906119f1565b0390f35b346102975760203660031901126102975760043561ffff811690818103610297576105fc612464565b6127108211610370576007805465ffff000000001916602092831b65ffff00000000161790556040519182527f15d91b4d718db1855b9f7ecf5157156ed93b2d3c478384aa28f5457c6b84cea191a1005b3461029757604036600319011261029757610673610669611a16565b6024359033612722565b602060405160018152f35b346102975761068c36611a80565b916106989391936128ce565b6106a06121ff565b926106a96121a8565b906106e3826106dc60018060a01b03966106d388600a541661ffff60075460101c1690858c612bcc565b505050506125d8565b8097613d1f565b9081106107365760209561072994610720879460ff7f00000000000000000000000000000000000000000000000000000000000000001690612321565b51169333613eb2565b6001600055604051908152f35b604051632d65aa3b60e11b8152600490fd5b3461029757600036600319011261029757602060405160008152f35b346102975761077236611a80565b9161077e9391936128ce565b6107866121ff565b9161078f6121a8565b6107bf818360018060a01b03966107b688600a541661ffff60075460101c16908584612bcc565b50505050613d1f565b9485106107365760209561072994610720879360ff7f00000000000000000000000000000000000000000000000000000000000000001690612321565b346102975760003660031901126102975760405160006005549060018260011c91600184169182156108e5575b60209485851084146108cf5785879486865291826000146108af57505060011461086f575b5061085b92500383611dfd565b6105cf6040519282849384528301906119f1565b849150600560005281600020906000915b85831061089757505061085b93508201018561084e565b80548389018501528794508693909201918101610880565b60ff19168582015261085b95151560051b850101925087915061084e9050565b634e487b7160e01b600052602260045260246000fd5b92607f1692610829565b3461029757604036600319011261029757610908611a2c565b600435600052600660205260406000209060018060a01b0316600052602052602060ff604060002054166040519015158152f35b3461029757604036600319011261029757610955611a60565b61095d611a70565b6109656128ce565b61096d6124de565b8160020b918215610370578160020b9283156103705760407ff377d6a9f671aab6c79113d6ee02cf6ec5f8de70d8e6a14e8b899bbe4852969f916109e6956007548660581b62ffffff60581b169062ffffff851b87861b169065ffffffffffff861b1916171760075582519182526020820152a16134bf565b6001600055005b34610297576000366003190112610297576040517f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a741066001600160a01b03168152602090f35b34610297576000366003190112610297576080610a5e610a506121ff565b610a586121a8565b90613b92565b909150600180841b03610a6f613c0c565b906020825192015192816040519516855216602084015260408301526060820152f35b34610297576000366003190112610297576008546040516001600160a01b039091168152602090f35b3461029757600036600319011261029757610ad46128ce565b610adc6124de565b6109e66007548060581c60020b9060401c60020b6134bf565b3461029757602036600319011261029757610b0e611a16565b610b16612464565b6001600160a01b0316801561037057600880546001600160a01b031916821790556040519081527f3f32684a32a11dabdbb8c0177de80aa3ae36a004d75210335b49e544e48cd0aa90602090a1005b34610297576020366003190112610297576001600160a01b03610b86611a16565b1660005260016020526020604060002054604051908152f35b604036600319011261029757610bb3611a2c565b600160ff196007541617600755610bc86128ce565b610bd0612290565b90610bd96121a8565b610bf960018060a01b03600a541661ffff60075460101c16908386612bcc565b50505050610c086004356125d8565b926001600160a01b03610c3e7f000000000000000000000000000000000000000000000000000000000000000060ff1684612321565b51168061131d5750600435340361130b575b610c6561ffff60075460201c16600435612d0e565b91610c6f82612332565b5151906020610c7d84612332565b5101516008546001600160a01b03169290600290810b907f000000000000000000000000000000000000000000000000000000000000000010156112f5577f0000000000000000000000000000000000000000000000000000000000000000600b8101546001600160a01b03169190610cf590612ead565b60028110156112f557610d6f9388610d509260018060a01b0390600b01541693610d1d611e1e565b610d256121a8565b9360020b907f00000000000000000000000000000000000000000000000000000000000000006142f0565b9060405192610d5e84611dab565b8352602083015260408201526146e7565b6004610d7b8288612353565b600c5460405163313ce56760e01b81529196919260209184919082906001600160a01b03165afa918215611177576000926112b9575b50600b546001600160a01b03168061125157506012905b6040516350d25bcd60e01b815291602083600481855afa9283156111775760009361121b575b50610e06600493610e0060209361256e565b9061257f565b916040519384809263313ce56760e01b82525afa918215611177576000926111da575b50610e36610e3c9261256e565b90612592565b7f000000000000000000000000000000000000000000000000000000000000000060ff166111c25790610e36610e75610e7b938661257f565b9161256e565b935b610e9b60075495610e9561ffff8860301c168a612d0e565b926125b2565b106111b057610f73937f000000000000000000000000000000000000000000000000000000000000000060ff1661119e5760ff83915b60081c1690818082111561119457610ee891612353565b905b7f000000000000000000000000000000000000000000000000000000000000000060ff1661118d57610f1c8389612353565b905b8082111561118357610f2f91612353565b905b84516020860151604051638e56c1c160e01b81526001600160a01b039283166004820152911660248201526101a460448201529560a090879081906064820190565b0381600180851b037f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf165afa95861561117757600096611140575b5094516001600160801b0395610ff692918716610fda6020610fcf8b612332565b51015160020b612ebe565b610ff0610fe68b612332565b515160020b612ebe565b9161322e565b9384166110b5575b50505050505060018060a01b031690811561109c57602091611022826003546125b2565b60035580600052600183526040600020828154019055806000600080516020614caf83398151915285604051868152a3604051600435815282848201527fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d760403392a3600160005560ff1960075416600755604051908152f35b60405163ec442f0560e01b815260006004820152602490fd5b6111239560206110d26110c788612332565b515160020b97612332565b510151935160029490940b936001600160a01b0316611135577f000000000000000000000000000000000000000000000000000000000000000060ff1661112e5761111d9250612353565b92613361565b828080808080610ffe565b505061111d565b505050600092613361565b610ff6929196506111689060a03d60a011611170575b6111608183611dfd565b81019061239e565b959091610fae565b503d611156565b6040513d6000823e3d90fd5b5050600090610f31565b8390610f1e565b5050600090610eea565b60ff6111aa8389612353565b91610ed1565b60405163e472516760e01b8152600490fd5b6111ce6111d49261256e565b84612e37565b93610e7d565b91506020823d602011611213575b816111f560209383611dfd565b8101031261029757610e3661120c610e3c93612560565b9250610e29565b3d91506111e8565b92506020833d602011611249575b8161123660209383611dfd565b8101031261029757915191610e06610dee565b3d9150611229565b60206004916040519283809263313ce56760e01b82525afa9081156111775760009161127f575b5090610dc8565b90506020813d6020116112b1575b8161129a60209383611dfd565b81010312610297576112ab90612560565b8b611278565b3d915061128d565b9091506020813d6020116112ed575b816112d560209383611dfd565b81010312610297576112e690612560565b908a610db1565b3d91506112c8565b634e487b7160e01b600052603260045260246000fd5b604051635f97a42560e11b8152600490fd5b6040516323b872dd60e01b602082015233602482015230604482015260043560648201526064815260a08101918183106001600160401b0384111761136d5761136892604052614a53565b610c50565b634e487b7160e01b600052604160045260246000fd5b346102975760003660031901126102975761139c6121ff565b6040516020918282018383528151809152836040840192019360005b8281106113c55784840385f35b85518051600290810b865290830151900b84830152948101946040909301926001016113b8565b3461029757604036600319011261029757606061142061140a611a60565b611412611a70565b61141a6121a8565b91612aa3565b6040519260018060801b0392838092168552166020840152166040820152f35b34610297576000366003190112610297576114596128ce565b6114616124de565b6109e66128f1565b3461029757600036600319011261029757600a546040516001600160a01b039091168152602090f35b346102975760203660031901126102975760043560ff811690818103610297577fa01055c07e9a8558cde074fef9285f3ec21371ba0fe0caaf5a49bd704a09c3c0916020916114df612464565b61ff006007549160081b169061ff00191617600755604051908152a1005b3461029757604036600319011261029757611516611a2c565b336001600160a01b038216036115325761001990600435612857565b60405163334bd91960e11b8152600490fd5b3461029757600036600319011261029757602060405160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b34610297576040366003190112610297576100196004356115a1611a2c565b908060005260066020526115bc60016040600020015461253a565b6127d7565b346102975760003660031901126102975760206040517f8b5b16d04624687fcf0d0228f19993c9157c1ed07b41d8d430fd9100eb099fe88152f35b346102975760203660031901126102975760043560005260066020526020600160406000200154604051908152f35b3461029757606036600319011261029757610673611647611a16565b61164f611a2c565b6044359161165e83338361264f565b612722565b3461029757600036600319011261029757602060075460401c60020b604051908152f35b3461029757600036600319011261029757602061ffff60075460301c16604051908152f35b34610297576000366003190112610297576020600354604051908152f35b3461029757600036600319011261029757602060ff60075460081c16604051908152f35b3461029757600036600319011261029757602060075460581c60020b604051908152f35b3461029757600036600319011261029757602060075461ffff60405191831c168152f35b346102975760403660031901126102975761174f611a16565b6024359033156117d5576001600160a01b03169081156117bc57336000526002602052604060002082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b604051634a1406b160e11b815260006004820152602490fd5b60405163e602df0560e01b815260006004820152602490fd5b3461029757602036600319011261029757602061180c6004356125bf565b604051908152f35b346102975760003660031901126102975760405160006004549060018260011c91600184169182156118b2575b60209485851084146108cf5785879486865291826000146108af575050600114611872575061085b92500383611dfd565b849150600460005281600020906000915b85831061189a57505061085b93508201018561084e565b80548389018501528794508693909201918101611883565b92607f1692611841565b346102975760003660031901126102975760206118d7611e1e565b6040519060020b8152f35b346102975760203660031901126102975760043563ffffffff60e01b811680910361029757602090637965db0b60e01b8114908115611927575b506040519015158152f35b6301ffc9a760e01b1490508261191c565b3461029757600036600319011261029757602061180c611ab9565b346102975760203660031901126102975760043561ffff8116908181036102975761197c612464565b6127108211610370577f86859aa19974f9f3f3d9843f10b1b02adb9d30ca2f4e8d4d4d875a4baf2166379160209161ffff60301b6007549160301b169061ffff60301b191617600755604051908152a1005b60005b8381106119e15750506000910152565b81810151838201526020016119d1565b90602091611a0a815180928185528580860191016119ce565b601f01601f1916010190565b600435906001600160a01b038216820361029757565b602435906001600160a01b038216820361029757565b3461029757602036600319011261029757602061180c6004356125d8565b600435908160020b820361029757565b602435908160020b820361029757565b608090600319011261029757600435906001600160a01b0390602435828116810361029757916044359081168103610297579060643590565b600c546040805163313ce56760e01b8082526001600160a01b03937f000000000000000000000000000000000000000000000000000000000000000060ff1615936020939290918490849060049082908a165afa928315611d8557600093611d4e575b50600b5460009087168581611ce55750505060125b611b39613c0c565b9480865196015197600854169184516350d25bcd60e01b81528281600481875afa908115611cda57908391600091611ca9575b50610e00611b7a929361256e565b93600486518095819382525afa938415611c9f5750600093611c64575b5050610e36611ba59261256e565b91611bb1610a50612290565b9391509385600014611c5d5786915b8615611c3657611be792611be190610e75906001600160801b0388166125b2565b91612e37565b945b8415611c2e5750925b15611c165750611c1392611c0e916001600160801b03166125b2565b6125b2565b90565b611c1393611c0e9250906001600160801b03166125b2565b905092611bf2565b611c5792611c5190610e75906001600160801b0389166125b2565b90612e37565b94611be9565b8291611bc0565b90809350813d8311611c98575b611c7b8183611dfd565b8101031261029757610e36611c92611ba593612560565b92611b97565b503d611c71565b513d6000823e3d90fd5b82819392503d8311611cd3575b611cc08183611dfd565b8101031261029757518290610e00611b6c565b503d611cb6565b86513d6000823e3d90fd5b6004918551928380928782525afa918215611d43578092611d08575b5050611b31565b9091508582813d8311611d3c575b611d208183611dfd565b81010312611d395750611d3290612560565b3880611d01565b80fd5b503d611d16565b8451903d90823e3d90fd5b9092508381813d8311611d7e575b611d668183611dfd565b8101031261029757611d7790612560565b9138611b1c565b503d611d5c565b82513d6000823e3d90fd5b604081019081106001600160401b0382111761136d57604052565b606081019081106001600160401b0382111761136d57604052565b60e081019081106001600160401b0382111761136d57604052565b61018081019081106001600160401b0382111761136d57604052565b90601f801991011681019081106001600160401b0382111761136d57604052565b600b54600c546001600160a01b03918216919081168080841161219f575b50818116828416101561029757604080516001600160a01b03948516602080830191825293909516918101919091526101a4606080830191909152815290928391611e88608082611dfd565b5190206040518281019182526201000f604082015260408152611eaa81611dab565b5190206024604051809481936302ce8af360e01b835260048301527f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a74106165afa91821561117757600092612171575b506001600160801b039180831691506201000282101580612158575b1561029757600160401b600160c01b039060401b168083811160071b9181831c926001600160401b03841160061b93841c9363ffffffff851160051b94851c9461ffff861160041b95861c60ff9687821160031b91821c92600f841160021b93841c94600160038711811b96871c11961717171717171791608083101560001461214c5750607e1982011c5b8002607f928392828493841c81841c1c800280851c81851c1c800280861c81861c1c800280871c81871c1c80029081881c82881c1c80029283891c84891c1c800294858a1c868a1c1c800296878b1c888b1c1c800298898c1c8a8c1c1c80029a8b8d1c8c821c1c8002809d1c8d821c1c8002809e81901c90821c1c80029e8f80911c911c1c800260cd1c6604000000000000169d60cc1c6608000000000000169c60cb1c6610000000000000169b60ca1c6620000000000000169a60c91c6640000000000000169960c81c66800000000000001698600160381b9060c71c1697600160391b9060c61c16966001603a1b9060c51c16956001603b1b9060c41c16946001603c1b9060c31c16936001603d1b9060c21c16926001603e1b9060c11c16916001603f1b9060c01c1690607f190160401b1717171717171717171717171717693627a301d71055774c8502906f028f6481ab7f045a5af012a19d003aa919820160801d60020b916fdb2df09e81959a81455e260799a0632f0160801d60020b92838314600014612134575050905090565b61213d84612ebe565b1611612147575090565b905090565b905081607f031b611fa0565b506f0ffff5433e2b3d8211706e6102aa94728210611f14565b90809250813d8311612198575b6121888183611dfd565b8101031261029757513880611ef8565b503d61217e565b92905038611e3c565b60405190600b6000835b600282106121c8575050506121c682611d90565b565b82546001600160a01b0316815260019283019291909101906020016121b2565b6001600160401b03811161136d5760051b60200190565b6009549061220c826121e8565b91604061221c6040519485611dfd565b81845260096000908152906020907f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af908287015b85851061225f57505050505050565b6001848192845161226f81611d90565b865460029080820b835260181c900b83820152815201930194019391612250565b6009549061229d826121e8565b9160406122ad6040519485611dfd565b81845260096000908152906020907f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af908287015b8585106122f057505050505050565b6001848192845161230081611d90565b865460029080820b835260181c900b838201528152019301940193916122e1565b9060028110156112f55760051b0190565b8051156112f55760200190565b80518210156112f55760209160051b010190565b9190820391821161236057565b634e487b7160e01b600052601160045260246000fd5b51906001600160801b038216820361029757565b51906001600160401b038216820361029757565b908160a0910312610297576040519060a082018281106001600160401b0382111761136d57612411916080916040526123d681612376565b84526123e460208201612376565b60208501526123f560408201612376565b60408501526124066060820161238a565b60608501520161238a565b608082015290565b6001600160401b03811161136d57601f01601f191660200190565b3d1561245f573d9061244582612419565b916124536040519384611dfd565b82523d6000602084013e565b606090565b3360009081527fab4ab2000706c1edca36921176badacea74d146983214a5caf9b3c51b4b3435660205260409020547f35a7846a2a701fff6f9d61a46ebff5da578c5dcee8bdf361c569f9ea4ee647719060ff16156124c05750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b3360009081527fba39d2e119d4075e56dadcfd5cd5b862305d2c4d32649e4866948958647d49cf60205260409020547f8b5b16d04624687fcf0d0228f19993c9157c1ed07b41d8d430fd9100eb099fe89060ff16156124c05750565b80600052600660205260406000203360005260205260ff60406000205416156124c05750565b519060ff8216820361029757565b60ff16604d811161236057600a0a90565b8181029291811591840414171561236057565b811561259c570490565b634e487b7160e01b600052601260045260246000fd5b9190820180921161236057565b60035480156125d457611c1391611c51611ab9565b5090565b60035480156125d4576125e9611ab9565b907f000000000000000000000000000000000000000000000000000000000000000060028110156112f557600b01546001600160a01b03161580612643575b61263557611c1392612e37565b611be183611c139493612353565b5060ff60075416612628565b9160018060a01b03809316916000938385526002602052604093848620918316918287526020528486205492600019840361268e575b50505050505050565b8484106126f2575080156126da5781156126c257855260026020528385209085526020520391205538808080808080612685565b8451634a1406b160e11b815260048101879052602490fd5b845163e602df0560e01b815260048101879052602490fd5b8551637dc7a0d960e11b81526001600160a01b039190911660048201526024810184905260448101859052606490fd5b916001600160a01b038084169283156127be571692831561109c57600090838252600160205260408220549083821061278c57509160408282600080516020614caf83398151915295876020965260018652038282205586815220818154019055604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101839052606490fd5b604051634b637e8f60e11b815260006004820152602490fd5b906000918083526006602052604083209160018060a01b03169182845260205260ff604084205416156000146128525780835260066020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b906000918083526006602052604083209160018060a01b03169182845260205260ff604084205416600014612852578083526006602052604083208284526020526040832060ff1981541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4600190565b6002600054146128df576002600055565b604051633ee5aeb560e01b8152600490fd5b600b54600c54604051638e56c1c160e01b81526001600160a01b03928316600482015290821660248201526101a460448201529060a0826064817f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf85165afa91821561117757600092612a82575b50612968612290565b906009549260005b84811061297e575050505050565b8151600191906001600160801b03908116612999838861233f565b5151600292602090816129ac878c61233f565b510151850b9389612a1b6129be613c0c565b926129c76121a8565b966129de6129d660009a612ebe565b918b0b612ebe565b8588015160075460081c60ff1692908380821115612a79576129ff91612353565b925b87519080821115612a7057612a1591612353565b9361322e565b94511615612a67575b508216612a36575b5050505001612970565b612a5e93612a44868b61233f565b5151810b91612a53878c61233f565b510151900b90613361565b38808080612a2c565b51935038612a24565b50508a9361322e565b50508a92612a01565b612a9c91925060a03d60a011611170576111608183611dfd565b903861295f565b825160209093015160405163d7fd8d0f60e01b81523060048201526001600160a01b03948516602482015290841660448201526101a46064820152600292830b6084820152910b60a482015290606090829060c49082907f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf165afa9081156111775760009182918391612b37575b50909192565b929150506060823d606011612b87575b81612b5460609383611dfd565b81010312611d395750612b6681612376565b612b7e6040612b7760208501612376565b9301612376565b90919038612b31565b3d9150612b47565b600f91820b910b019060016001607f1b0319821260016001607f1b0383131761236057565b600f0b60016001607f1b031981146123605760000390565b909193600094600093849585809560095482915b818310612cbe575050508089600f0b12612c43575b87600f0b12612c0357505050565b9193506121c691612c2b9061ffff6001600160801b03612c228a612bb4565b16911690612d0e565b602090910151909384916001600160a01b031661428f565b9550612c656001600160801b03612c598a612bb4565b1661ffff831690612d0e565b95808760018060a01b0386818751168015600014612cac575050828092819282908215612ca2575b8a1690f1612bf5575b604051903d90823e3d90fd5b6108fc9150612c8d565b909150612cb9935061428f565b612bf5565b9091999a612d05600191612cff612cf6898f612cda818961233f565b51516020612cea6002938b61233f565b510151820b910b61402c565b93909150612b8f565b9d612b8f565b9a019190612be0565b908082029060001981840990828083109203918083039214612d7f576127109082821115612d6c577fbc01a36e2eb1c432ca57a786c226809d495182a9930be0ded288ce703afb7e91940990828211900360fc1b910360041c170290565b634e487b7160005260116020526024601cfd5b505061271091500490565b90670de0b6b3a7640000808302919060001981850993838086109503948086039514612e2a5784831115612e0a579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b82612e235760125b634e487b716000526020526024601cfd5b6011612e12565b505090611c139250612592565b918183029160001981850993838086109503948086039514612e2a5784831115612e0a579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b60ff166001039060ff821161236057565b60020b620a276d1981121580613221575b1561029757600081121561321b5780600003905b6001821615613211576ffffcb933bd6fad37aa2d162d1a5940015b6001600160881b031691600281166131f5575b600481166131d9575b600881166131bd575b601081166131a1575b60208116613185575b60408116613169575b60809081811661314e575b6101008116613133575b6102008116613118575b61040081166130fd575b61080081166130e2575b61100081166130c7575b61200081166130ac575b6140008116613091575b6180008116613076575b62010000811661305b575b620200008116613041575b620400008116613027575b620800001661300c575b50600012612ffd575b6001600160401b038116612ff5576000905b60401c60ff91909116016001600160801b031690565b600190612fdf565b801561259c5760001904612fcd565b6b048a170391f7dc42444e8fa26000929302901c9190612fc4565b6d2216e584f5fa1ea926041bedfe98909302811c92612fba565b926e5d6af8dedb81196699c329225ee60402811c92612faf565b926f09aa508b5b7a84e1c677de54f3e99bc902811c92612fa4565b926f31be135f97d08fd981231505542fcfa602811c92612f99565b926f70d869a156d2a1b890bb3df62baf32f702811c92612f8f565b926fa9f746462d870fdf8a65dc1f90e061e502811c92612f85565b926fd097f3bdfd2022b8845ad8f792aa582502811c92612f7b565b926fe7159475a2c29b7443b29c7fa6e889d902811c92612f71565b926ff3392b0822b70005940c7a398e4b70f302811c92612f67565b926ff987a7253ac413176f2b074cf7815e5402811c92612f5d565b926ffcbe86c7900a88aedcffc83b479aa3a402811c92612f53565b926ffe5dee046a99a2a811c461f1969c305302811c92612f49565b916fff2ea16466c96a3843ec78b326b528610260801c91612f3e565b916fff973b41fa98c081472e6896dfb254c00260801c91612f35565b916fffcb9843d60f6159c9db58835c9266440260801c91612f2c565b916fffe5caca7e10e4e61c3624eaa0941cd00260801c91612f23565b916ffff2e50f5f656932ef12357cf3c7fdcc0260801c91612f1a565b916ffff97272373d413259a46990580e213a0260801c91612f11565b600160801b612efe565b80612ee3565b50620cb14a811315612ecf565b929390926001600160801b039190838316838616116132fb575b808316858416811161327b57505050831692830361029757610800600160801b03926132779290600090614ad9565b1690565b83859693959792949716116000146132d55785811690810361029757610800600160801b039485916132b291908590600090614ad9565b169483169283036102975760016132c893614ad9565b1680821015612147575090565b509291809491501692830361029757610800600160801b03926132779290600190614ad9565b939293613248565b602081830312610297578051906001600160401b038211610297570181601f8201121561029757805161333581612419565b926133436040519485611dfd565b8184526020828401011161029757611c1391602080850191016119ce565b600b54600c546007546001600160a01b03928316956001600160801b039593949285169390861660209290921c61ffff1691909102808616929190830361236057604051936001602086015287604086015260608501526101a4608085015260020b60a084015260020b60c0830152612710610800600160801b0391041660e0820152600094859384610100840152610120830152836101408301526101608481840152825261341082611de1565b8394156134a6575b50906134499160405194858094819363a15112f960e01b8352608060048401526040602484015260448301906119f1565b03927f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a74106165af1801561349b5761347d575050565b613498913d8091833e6134908183611dfd565b810190613303565b50565b6040513d84823e3d90fd5b9350613449613418565b519061ffff8216820361029757565b9060018060a01b039182600b54169280600c541693604091825193633fc58f8560e21b85526004928386015260249660248601526101a4604486015260e085606481857f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf165afa8015613b6e57600090613ac4575b6060015160019761ffff918216890b96509061354e612290565b9061357061355a6121a8565b9186600a54169060075460101c16908385612bcc565b505050508151918a60005b848110613a635750505050508260085416926135956121a8565b93818551168660009180156000146139f0575050506012915b602080960151168751928684898163313ce56760e01b958682525afa9384156139e5576000946139ae575b5088516350d25bcd60e01b815287818a81875afa9081156139a357908891600091613972575b50610e0061360d929361256e565b91888a518095819382525afa9182156139675760009261392b575b50610e366136359261256e565b9060ff613640613c0c565b9161365a613651858986015161257f565b610e368361256e565b613662611e1e565b9351109389519061367282611dc6565b81528781019b600297880b8d528a820190880b815260608201918c835284608082019416845260a0810195890b865260c0810196875260248c519e8f92630377eb8760e21b8452518d840152518a0b91015251870b60448d015251860b60648c0152511660848a015251830b60a489015251151560c488015260008760e48173434b096c9fc3f316490f8b07d7d9b34a2ef39cb65af49586156139205760009788976138bc575b50875190875182036138ad5760005b828110613835575050506009918254600084558061380d575b5087519760005b8981106137625750505050505050505050506121c66128f1565b61376c818361233f565b51830b613779828b61233f565b51840b89519161378883611d90565b82528782019081528654600160401b8110156137f9578d81018089558110156137e557908d93929188600052896000200191519062ffffff8354915160181b65ffffff0000001692169065ffffffffffff19161717905501613748565b8660328b634e487b7160e01b600052526000fd5b8660418b634e487b7160e01b600052526000fd5b836000528985600020918201915b828110613829575050613741565b60008155018a9061381b565b61383f818b61233f565b51850b8261384d838c61233f565b51870b808312928315613895575b508215613880575b5050613870578a01613728565b87516309aab2bb60e41b81528790fd5b61388a9250614c17565b850b15158238613863565b6138a29193508290614c17565b870b1515913861385b565b865162de0e3560e11b81528690fd5b9096503d8089833e6138ce8183611dfd565b810190868183031261391c578051906001600160401b039182811161391857836138f99183016149e8565b9986820151928311611d3957506139119291016149e8565b9538613719565b8a80fd5b8880fd5b85513d6000823e3d90fd5b91508582813d8311613960575b6139428183611dfd565b8101031261029757610e3661395961363593612560565b9250613628565b503d613938565b88513d6000823e3d90fd5b82819392503d831161399c575b6139898183611dfd565b8101031261029757518790610e006135ff565b503d61397f565b8a513d6000823e3d90fd5b9093508681813d83116139de575b6139c68183611dfd565b81010312610297576139d790612560565b92386135d9565b503d6139bc565b89513d6000823e3d90fd5b6020908a519283809263313ce56760e01b82525afa918215613a58578092613a1b575b5050916135ae565b9091506020823d602011613a50575b81613a3760209383611dfd565b81010312611d395750613a4990612560565b3880613a13565b3d9150613a2a565b8951903d90823e3d90fd5b613abc84613a71838661233f565b5151600290613a958360209283613a88898c61233f565b510151850b90850b612aa3565b505091613aa2868961233f565b5151810b91613ab1878a61233f565b510151900b90614b50565b018b9061357b565b5060e0853d60e011613b66575b81613ade60e09383611dfd565b8101031261029757606094613b5c60c0865192613afa84611dc6565b613b0381612560565b8452613b11602082016134b0565b6020850152613b21888201612560565b88850152613b308982016134b0565b89850152613b4060808201612560565b6080850152613b5160a08201612560565b60a085015201612560565b60c0820152613534565b3d9150613ad1565b84513d6000823e3d90fd5b6001600160801b03918216908216019190821161236057565b906000926000926000928151906000925b828410613bb05750505050565b909192949596613c02613bf6613bfc600193613bed878b613bd1818a61233f565b51516020613be16002938c61233f565b510151820b910b612aa3565b94919092613b79565b9b613b79565b98613b79565b9501929190613ba3565b6040808051613c1a81611d90565b369037805190613c2982611d90565b600b546001600160a01b0390600090821680613cb15750506020602491475b8552600c54168351928380926370a0823160e01b82523060048301525afa918215611c9f5750600091613c7f575b50602082015290565b90506020813d602011613ca9575b81613c9a60209383611dfd565b81010312610297575138613c76565b3d9150613c8d565b60206024918551928380926370a0823160e01b82523060048301525afa918215611d43578092613ce9575b5050602491602091613c48565b9091506020823d602011613d17575b81613d0560209383611dfd565b81010312611d39575051816020613cdc565b3d9150613cf8565b90613d28613c0c565b928351926020809501519160039360035492613d50613d4885848a612e37565b948387612e37565b9581519260009160005b858110613e235750505050505050613d929291613d8c611c0e92611c0e613d7f613c0c565b9789895199015198612353565b94612353565b7f000000000000000000000000000000000000000000000000000000000000000060ff16613dfa57600c54600b54604051611c1395613df494919391926001600160a01b039081169216613de585611dab565b845283015260408201526146e7565b506125b2565b90611c1392613df49160018060a01b039182600b541692600c54169060405193613de585611dab565b8b613e4e88613e32848961233f565b5151600293613e41868b61233f565b510151840b90840b612aa3565b505083546001600160801b039291613e6a919087908516612e37565b91808311613e9e578e8493613e98938c93613e876001988d61233f565b5151820b921692613ab1878d61233f565b01613d5a565b634e487b7160e01b87526001600452602487fd5b6001600160a01b03808216968185169493919287868a0361400d575b505084156127be5760009085825260016020526040948583205490898210613fdc5750908885928885526001602052038684205588600354036003558287600080516020614caf833981519152602089518d8152a31680613fa057508080878015613f96575b82809291819288881690f115613f8b57509160a09593917ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db9795935b825196875216602086015284015260608301526080820152a1565b8351903d90823e3d90fd5b6108fc9150613f34565b60a0979593915091613fd787827ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db9b99979561428f565b613f70565b865163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101899052606490fd5b614017918661264f565b3887613ece565b519081600f0b820361029757565b92919061403a828286612aa3565b50909490506001600160801b0385161561427f57906140fe929160018060a01b03835116916000602085019360018060a01b038551166040519160026020840152604083015260608201526101a460808201528260020b60a08201528360020b60c08201528160e08201528161010082015260018060801b03610120820152816101408201528161016082015261016081526140d581611de1565b6040518097819263a15112f960e01b8352608060048401526040602484015260448301906119f1565b0381837f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a741066001600160a01b03165af1938415611177576141e295600095614265575b5051925160408051600560208201526001600160a01b0395861691810191909152931660608401526101a46080840152600290810b60a08401520b60c082015260e0810182905261010081018290526001600160801b03610120820152610140810182905261016080820183905281526141b981611de1565b6040518093819263a15112f960e01b8352608060048401526040602484015260448301906119f1565b0381837f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a741066001600160a01b03165af19081156111775760009161424a575b5060408180518101031261029757614246604061423f6020840161401e565b920161401e565b9091565b61425f91503d806000833e6134908183611dfd565b38614220565b614278903d8088833e6134908183611dfd565b5038614140565b5050509050600090600090600090565b60405163a9059cbb60e01b60208201526001600160a01b03909216602483015260448083019390935291815260808101916001600160401b0383118284101761136d576121c692604052614a53565b60ff60129116019060ff821161236057565b9195949060020b8660020b81136146d5578360020b136146bb5780516000966001600160a01b0393918416806146445750602096975083876012945b0151166040519788809263313ce56760e01b825260049a8b915afa9081156111775760009161460a575b5084600b54169460a081600c54169660648b6040519485938492638e56c1c160e01b845283015260249a8b8301526101a460448301527f00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf165afa908115611177576000916145eb575b50516001600160801b03908116906143ef6143e66143dd848061257f565b610e008661256e565b60801c98612ebe565b916143f98761256e565b9282841693840361029757610800600160801b0393614429918591614422918591600190614ad9565b1695612ebe565b906144338561256e565b92831692830361029757600061444893614ad9565b169260009060ff166144d15750509061446091612d8a565b91670de0b6b3a764000095868602958087048814901517156144be575050916144af6144b49285611be161449f61449a6144ba99986142de565b61256e565b6144a9868561257f565b906125b2565b61257f565b90612353565b0490565b601190634e487b7160e01b600052526000fd5b9394989792916144e96144ef929888611be18961256e565b92612d8a565b60ff85168060120160ff81116145d95761450b6145119161256e565b8461257f565b9061452761452161449a8b6142de565b8961257f565b9060ff8a160160ff81116145c7576145509392916144a961454a611be19361256e565b8561257f565b670de0b6b3a764000096878302928084048914901517156145b557916144b461457f92610e006145859561256e565b9361256e565b938581029581870414901517156145a3575050611c13939450612e37565b634e487b7160e01b8252601190528590fd5b634e487b7160e01b8552601184528985fd5b634e487b7160e01b8752601186528b87fd5b634e487b7160e01b8652601185528a86fd5b614604915060a03d60a011611170576111608183611dfd565b386143bf565b906020823d60201161463c575b8161462460209383611dfd565b81010312611d39575061463690612560565b38614356565b3d9150614617565b60206004916040519283809263313ce56760e01b82525afa988915612c96578099614678575b50508360208098999461432c565b9098506020893d6020116146b3575b8161469460209383611dfd565b81010312611d3957508360206146ab81999a612560565b99985061466a565b3d9150614687565b50611c1393945060ff91506146cf90612ead565b1661257f565b5050611c1393945060ff91501661257f565b9060408083018051156149dc578351602080860180519194926001600160a01b0392831691908316828110156149d45760015b614722613c0c565b93858b511686600b5416146000146149c85788855195015194975b516001600160801b038082169190818303610297578b9385156149bd57896f0ffff5433e2b3d8211706e6102aa9471915b818d51991680978a0152168b8801526101a4938460608901528615158060808a015260a089015260c0880152600060e0880152166101008601526000610120860152610140600081870152855261016092838601948686106001600160401b0387111761136d5760009386938492838e528694816149b4575b506149ac575b5063a15112f960e01b825260016101648901528b6101848901528761481861015f19928201826119f1565b0301918a7f000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a74106165af180156149a15790869493929161497b575b5050505116856000918015600014614902575050506148709047612353565b9551600091168061488a57505050611c1391504790612353565b90846024928451938480926370a0823160e01b82523060048301525afa9283156148f8575080926148c3575b5050611c13925090612353565b9150919282813d83116148f1575b6148db8183611dfd565b81010312611d39575090611c13915138806148b6565b503d6148d1565b51903d90823e3d90fd5b85516370a0823160e01b81523060048201529190829060249082905afa91821561497057809261493e575b50509061493991612353565b614870565b9091508682813d8311614969575b6149568183611dfd565b81010312611d395750516149393861492d565b503d61494c565b8551903d90823e3d90fd5b614998923d90816000853e6149908285611dfd565b010190613303565b50388080614851565b87513d6000823e3d90fd5b9250386147ed565b905015386147e7565b89620100029161476e565b8451948901519761473d565b91600061471a565b50509050600090600090565b9080601f8301121561029757815190602091614a03816121e8565b93614a116040519586611dfd565b81855260208086019260051b82010192831161029757602001905b828210614a3a575050505090565b81518060020b8103610297578152908301908301614a2c565b60018060a01b031690614a7d600080836020829551910182875af1614a76612434565b9084614c4b565b908151918215159283614aad575b505050614a955750565b60249060405190635274afe760e01b82526004820152fd5b819293509060209181010312614ad5576020015190811591821503611d395750388080614a8b565b5080fd5b9190614afd57916001614af7614af1611c1395614c29565b92614c29565b92614ad9565b6001600160801b039283918291908183168184161115614b485703165b1690811561259c5760401b600160401b600160c01b031604908116906001600160c01b031681036102975790565b900316614b1a565b9092916001600160801b039182821615614c105760018060a01b039485602081875116960151166040519560026020880152604087015260608601526101a4608086015260020b60a085015260020b60c0840152610800600160801b031660e08301526134496000938385949385610100819601526101208201528361014082015261016084818301528152614be581611de1565b60405194858094819363a15112f960e01b8352608060048401526040602484015260448301906119f1565b5050505050565b9060020b90811561259c5760020b0790565b6001600160801b03908116801561259c57600160801b04818111610297571690565b90614c725750805115614c6057805190602001fd5b60405163d6bda27560e01b8152600490fd5b81511580614ca5575b614c83575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b15614c7b56feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000817000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000005dc0000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000001a00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000000000000000002710000000000000000000000000000000000000000000000000000000000000251c0000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006efdbff2a14a7c8e15944d1f4a48f9f95f663a40000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a7410600000000000000000000000068b9e8b700f19b879b90e8485a00dd7a3044a214000000000000000000000000000000000000000000000000000000000000002154454d504553542053594d204554482d55534443204c502045544820417373657400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001854454d504553545f53594d5f4554485f555344435f4554480000000000000000

-----Decoded View---------------
Arg [0] : _baseWidth (int24): 1500
Arg [1] : _limitWidth (int24): 5000
Arg [2] : sParams (tuple):
Arg [1] : name (string): TEMPEST SYM ETH-USDC LP ETH Asset
Arg [2] : symbol (string): TEMPEST_SYM_ETH_USDC_ETH
Arg [3] : assetIdx (uint8): 0
Arg [4] : fee (uint16): 1000
Arg [5] : investedPercentage (uint16): 10000
Arg [6] : swapSlippage (uint16): 9500
Arg [7] : feeRecipient (address): 0x9aC6Cd80f41bDfd22F1133E14539549a93ef528A
Arg [8] : token0 (address): 0x0000000000000000000000000000000000000000
Arg [9] : token1 (address): 0x06eFdBFf2a14a7c8E15944D1F4A48F9F95F663A4
Arg [10] : governor (address): 0x9aC6Cd80f41bDfd22F1133E14539549a93ef528A
Arg [11] : cQuery (address): 0x62223e90605845Cf5CC6DAE6E0de4CDA130d6DDf
Arg [12] : cSwapDex (address): 0xaaaaAAAACB71BF2C8CaE522EA5fa455571A74106
Arg [13] : oracle (address): 0x68b9e8b700f19B879b90E8485a00DD7A3044A214


-----Encoded View---------------
21 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000000005dc
Arg [1] : 0000000000000000000000000000000000000000000000000000000000001388
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001a0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [6] : 00000000000000000000000000000000000000000000000000000000000003e8
Arg [7] : 0000000000000000000000000000000000000000000000000000000000002710
Arg [8] : 000000000000000000000000000000000000000000000000000000000000251c
Arg [9] : 0000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [11] : 00000000000000000000000006efdbff2a14a7c8e15944d1f4a48f9f95f663a4
Arg [12] : 0000000000000000000000009ac6cd80f41bdfd22f1133e14539549a93ef528a
Arg [13] : 00000000000000000000000062223e90605845cf5cc6dae6e0de4cda130d6ddf
Arg [14] : 000000000000000000000000aaaaaaaacb71bf2c8cae522ea5fa455571a74106
Arg [15] : 00000000000000000000000068b9e8b700f19b879b90e8485a00dd7a3044a214
Arg [16] : 0000000000000000000000000000000000000000000000000000000000000021
Arg [17] : 54454d504553542053594d204554482d55534443204c50204554482041737365
Arg [18] : 7400000000000000000000000000000000000000000000000000000000000000
Arg [19] : 0000000000000000000000000000000000000000000000000000000000000018
Arg [20] : 54454d504553545f53594d5f4554485f555344435f4554480000000000000000


Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.