Source Code
Overview
ETH Balance
ETH Value
$0.00| Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 17614069 | 183 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
ChaosPushOracle
Compiler Version
v0.8.29+commit.ab55807c
Optimization Enabled:
No with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
/**
* @title ChaosPushOracle
* @author Chaos Labs
* @dev A decentralized oracle contract that allows trusted oracles to push price updates
* with multi-signature verification. Upgradable using UUPS proxy pattern.
*/
contract ChaosPushOracle is OwnableUpgradeable, UUPSUpgradeable {
using ECDSA for bytes32;
using MessageHashUtils for bytes32;
// ============ Custom Errors ============
error FeedIdMismatch();
error TimestampTooOld();
error TimestampTooFar();
error TimestampNotNewer();
error InsufficientSignatures();
error SignerNotTrusted();
error OracleAlreadyTrusted();
error OracleNotFound();
error RoundNotAvailable();
error RoundExceedsUint80Limit();
// ============ Structs ============
struct RoundData {
int256 price; // Price of the asset
uint256 reportRoundId; // ID of the report round
uint256 observedTs; // Timestamp when the observation was made
uint256 blockNumber; // Block number of the transaction
uint256 postedTs; // Timestamp when the data was posted
uint8 numSignatures; // Count of valid signatures for this round
}
// ============ State Variables ============
uint8 public decimals; // Number of decimal places for price
string public description; // Description of the oracle
uint80 internal _latestRound; // Tracks the latest round number, initialized to 0
mapping(uint80 => RoundData) public rounds; // Mapping of round number to RoundData
mapping(address => bool) public trustedOracles; // Mapping of trusted oracle addresses
address[] public oracles; // List of all trusted oracles
address public deprecated_trustedSender; // IMPORTANT: Maintains storage layout compatibility
string public feedId; // The feed ID this oracle is responsible for
// ============ Events ============
/**
* @dev Emitted when an oracle is added to the trusted list
*/
event OracleAdded(address indexed oracle);
/**
* @dev Emitted when an oracle is removed from the trusted list
*/
event OracleRemoved(address indexed oracle);
/**
* @dev Emitted when a new price update is successfully posted
*/
event NewPriceUpdate(
uint80 indexed roundId,
int256 price,
uint256 reportRoundId,
uint256 timestamp,
address transmitter,
uint256 numSignatures
);
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
// ============ Initializer ============
/**
* @notice Initializes the contract instead of using a constructor
* @param _decimals Number of decimal places for price
* @param _description Description of the oracle
* @param _owner Address of the contract owner
* @param _oracles Array of initial oracle addresses to be trusted
*/
function initialize(uint8 _decimals, string memory _description, address _owner, address[] memory _oracles)
public
initializer
{
__Ownable_init(_owner);
__UUPSUpgradeable_init();
decimals = _decimals;
description = _description;
feedId = "";
_latestRound = 0;
// Add initial oracles
for (uint256 i = 0; i < _oracles.length; i++) {
address oracle = _oracles[i];
if (trustedOracles[oracle]) revert OracleAlreadyTrusted();
trustedOracles[oracle] = true;
oracles.push(oracle);
}
}
/**
* @notice Initializes the contract when upgrading from a previous version
* @param _feedId The feed ID this oracle is responsible for
*/
function initializeV2(string memory _feedId) external reinitializer(2) onlyOwner {
feedId = _feedId;
}
// ============ Upgrade Authorization ============
/**
* @dev Function that authorizes an upgrade to a new implementation.
* Only the owner can upgrade the contract.
* @param newImplementation Address of the new implementation contract
*/
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
// ============ Oracle Management Functions ============
/**
* @notice Owner can add a trusted oracle
* @param oracle Address of the oracle to be added
*/
function addOracle(address oracle) external onlyOwner {
if (trustedOracles[oracle]) revert OracleAlreadyTrusted();
trustedOracles[oracle] = true;
oracles.push(oracle);
emit OracleAdded(oracle);
}
/**
* @notice Owner can remove a trusted oracle
* @param oracle Address of the oracle to be removed
*/
function removeOracle(address oracle) external onlyOwner {
if (!trustedOracles[oracle]) revert OracleNotFound();
trustedOracles[oracle] = false;
// Remove from oracles array
for (uint256 i = 0; i < oracles.length; i++) {
if (oracles[i] == oracle) {
oracles[i] = oracles[oracles.length - 1];
oracles.pop();
break;
}
}
emit OracleRemoved(oracle);
}
// ============ Update Posting Function ============
/**
* @notice Anyone can submit a report signed by multiple trusted oracles
* @param report Encoded report data (string feedId, int256 price, uint256 reportRoundId, uint256 obsTs)
* @param signatures Array of signatures from trusted oracles
*/
function postUpdate(bytes memory report, bytes[] memory signatures) external {
// Decode report
(bytes32 reportFeedId, int256 price, uint256 reportRoundId, uint256 observationTs) =
abi.decode(report, (bytes32, int256, uint256, uint256));
// Verify feed ID matches
if (reportFeedId != keccak256(bytes(feedId))) revert FeedIdMismatch();
// Timestamp checks
if (observationTs <= rounds[_latestRound].observedTs) revert TimestampNotNewer();
if (observationTs > block.timestamp + 5 minutes) revert TimestampTooFar();
uint256 minAllowedTimestamp = block.timestamp > 1 hours ? block.timestamp - 1 hours : 0;
if (observationTs < minAllowedTimestamp) revert TimestampTooOld();
// Signature verification
// The message to be verified is the hash of the raw `report` bytes.
bytes32 messageHash = keccak256(report);
// Verify signatures
uint256 validSignatures = _verifySignatures(messageHash, signatures);
if (validSignatures < requiredSignatures()) revert InsufficientSignatures();
// Update round data
if (_latestRound == type(uint80).max) revert RoundExceedsUint80Limit();
_latestRound++;
rounds[_latestRound] = RoundData({
price: price,
reportRoundId: reportRoundId,
observedTs: observationTs,
blockNumber: block.number,
postedTs: block.timestamp,
numSignatures: uint8(validSignatures)
});
emit NewPriceUpdate(_latestRound, price, reportRoundId, observationTs, msg.sender, validSignatures);
}
/**
* @dev Internal function to verify multiple signatures
* @param messageHash The hash of the message being verified
* @param signatures Array of signatures to verify
* @return validSignatures Number of valid signatures
*/
function _verifySignatures(bytes32 messageHash, bytes[] memory signatures) private view returns (uint256) {
uint256 numSignatures = signatures.length;
uint256 validSignatures = 0;
address[] memory signers = new address[](numSignatures);
for (uint256 i = 0; i < numSignatures; i++) {
address signer = messageHash.recover(signatures[i]);
if (!trustedOracles[signer]) revert SignerNotTrusted();
// Check for duplicates
bool isDuplicate = false;
for (uint256 j = 0; j < validSignatures; j++) {
if (signers[j] == signer) {
isDuplicate = true;
break;
}
}
if (!isDuplicate) {
signers[validSignatures] = signer;
validSignatures++;
}
}
return validSignatures;
}
// ============ Utility Functions ============
/**
* @notice Returns the number of required signatures (e.g., majority)
* @return The number of required signatures
*/
function requiredSignatures() public view returns (uint256) {
uint256 totalOracles = oracles.length;
uint256 threshold = (totalOracles * 2 + 2) / 3;
return threshold > 0 ? threshold : 1;
}
// ============ Data Retrieval Functions ============
/**
* @notice Get the latest round number
* @return The latest round number
*/
function latestRound() external view returns (uint256) {
return uint256(_latestRound);
}
/**
* @notice Get the price for a specific round
* @param roundId The round ID to retrieve price for
* @return The price for the specified round
*/
function getAnswer(uint256 roundId) external view returns (int256) {
if (roundId == 0 || roundId > _latestRound) revert RoundNotAvailable();
return rounds[uint80(roundId)].price;
}
/**
* @notice Get the timestamp for a specific round
* @param roundId The round ID to retrieve timestamp for
* @return The timestamp for the specified round
*/
function getTimestamp(uint256 roundId) external view returns (uint256) {
if (roundId == 0 || roundId > _latestRound) revert RoundNotAvailable();
return rounds[uint80(roundId)].postedTs;
}
/**
* @notice Retrieve round data for a specific round
* @param round The round number to retrieve data for
* @return price The price for the specified round
* @return reportRoundId The report round ID
* @return timestamp The timestamp of the observation
* @return blockNumber The block number when the round was posted
*/
function getRoundData(uint80 round)
external
view
returns (int256 price, uint256 reportRoundId, uint256 timestamp, uint256 blockNumber)
{
if (round == 0 || round > _latestRound) revert RoundNotAvailable();
RoundData storage data = rounds[round];
return (data.price, data.reportRoundId, data.observedTs, data.blockNumber);
}
/**
* @notice Returns details of the latest successful update round
* @return roundId The number of the latest round
* @return answer The latest reported value
* @return startedAt Block timestamp when the latest successful round started
* @return updatedAt Block timestamp of the latest successful round
* @return answeredInRound The number of the latest round
*/
function latestRoundData()
external
view
virtual
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
roundId = uint80(_latestRound);
answer = latestAnswer();
RoundData storage data = rounds[_latestRound];
startedAt = data.observedTs;
updatedAt = data.postedTs;
answeredInRound = roundId;
}
/**
* @notice Retrieve the timestamp of the latest round
* @return timestamp The timestamp of the latest round
*/
function latestTimestamp() external view returns (uint256 timestamp) {
return rounds[_latestRound].postedTs;
}
// ============ Admin Functions ============
/**
* @notice Set the description of the oracle
* @param _description The new description
*/
function setDescription(string memory _description) external onlyOwner {
description = _description;
}
/**
* @notice Set the number of decimals for the answer values
* @param _decimals The new number of decimals
*/
function setDecimals(uint8 _decimals) external onlyOwner {
decimals = _decimals;
}
/**
* @notice Set the feed ID of the oracle
* @param _feedId The new feed ID
*/
function setFeedId(string memory _feedId) external onlyOwner {
feedId = _feedId;
}
// ============ Helper Functions ============
/**
* @notice Helper function that generates the Ethereum-style message hash
* @param _data The data to hash
* @return The keccak256 hash of the data
*/
function getMessageHash(bytes calldata _data) external pure returns (bytes32) {
return keccak256(_data);
}
/**
* @notice Chainlink-compatible function for getting the latest successfully reported value
* @return The latest successfully reported value
*/
function latestAnswer() public view virtual returns (int256) {
return rounds[_latestRound].price;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.22;
import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This library provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
*/
library ERC1967Utils {
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit IERC1967.Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit IERC1967.AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the ERC-1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit IERC1967.BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, bytes memory returndata) = recipient.call{value: amount}("");
if (!success) {
_revert(returndata);
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"ds-test/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
"solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/"
],
"optimizer": {
"enabled": false,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": true,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FeedIdMismatch","type":"error"},{"inputs":[],"name":"InsufficientSignatures","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OracleAlreadyTrusted","type":"error"},{"inputs":[],"name":"OracleNotFound","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"RoundExceedsUint80Limit","type":"error"},{"inputs":[],"name":"RoundNotAvailable","type":"error"},{"inputs":[],"name":"SignerNotTrusted","type":"error"},{"inputs":[],"name":"TimestampNotNewer","type":"error"},{"inputs":[],"name":"TimestampTooFar","type":"error"},{"inputs":[],"name":"TimestampTooOld","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint80","name":"roundId","type":"uint80"},{"indexed":false,"internalType":"int256","name":"price","type":"int256"},{"indexed":false,"internalType":"uint256","name":"reportRoundId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"address","name":"transmitter","type":"address"},{"indexed":false,"internalType":"uint256","name":"numSignatures","type":"uint256"}],"name":"NewPriceUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oracle","type":"address"}],"name":"OracleAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oracle","type":"address"}],"name":"OracleRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"}],"name":"addOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deprecated_trustedSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feedId","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"roundId","type":"uint256"}],"name":"getAnswer","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"getMessageHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint80","name":"round","type":"uint80"}],"name":"getRoundData","outputs":[{"internalType":"int256","name":"price","type":"int256"},{"internalType":"uint256","name":"reportRoundId","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"blockNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"roundId","type":"uint256"}],"name":"getTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_decimals","type":"uint8"},{"internalType":"string","name":"_description","type":"string"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address[]","name":"_oracles","type":"address[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_feedId","type":"string"}],"name":"initializeV2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"latestAnswer","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestRound","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestRoundData","outputs":[{"internalType":"uint80","name":"roundId","type":"uint80"},{"internalType":"int256","name":"answer","type":"int256"},{"internalType":"uint256","name":"startedAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint80","name":"answeredInRound","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestTimestamp","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"oracles","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"report","type":"bytes"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"}],"name":"postUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"}],"name":"removeOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"requiredSignatures","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint80","name":"","type":"uint80"}],"name":"rounds","outputs":[{"internalType":"int256","name":"price","type":"int256"},{"internalType":"uint256","name":"reportRoundId","type":"uint256"},{"internalType":"uint256","name":"observedTs","type":"uint256"},{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"uint256","name":"postedTs","type":"uint256"},{"internalType":"uint8","name":"numSignatures","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_decimals","type":"uint8"}],"name":"setDecimals","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_description","type":"string"}],"name":"setDescription","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_feedId","type":"string"}],"name":"setFeedId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"trustedOracles","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"}]Contract Creation Code
60a06040523461003e5761001161004d565b610019610043565b613c336102c88239608051818181613145015281816131aa01526133580152613c3390f35b610049565b60405190565b5f80fd5b6100556100a1565b61005d61019e565b565b60018060a01b031690565b90565b61008161007c6100869261005f565b61006a565b61005f565b90565b6100929061006d565b90565b61009e90610089565b90565b6100aa30610095565b608052565b60401c90565b60ff1690565b6100c76100cc916100af565b6100b5565b90565b6100d990546100bb565b90565b5f0190565b5f1c90565b60018060401b031690565b6100fd610102916100e1565b6100e6565b90565b61010f90546100f1565b90565b60018060401b031690565b5f1b90565b9061013360018060401b039161011d565b9181191691161790565b61015161014c61015692610112565b61006a565b610112565b90565b90565b9061017161016c6101789261013d565b610159565b8254610122565b9055565b61018590610112565b9052565b919061019c905f6020850194019061017c565b565b6101a6610256565b6101b15f82016100cf565b61023a576101c05f8201610105565b6101d86101d260018060401b03610112565b91610112565b036101e1575b50565b6101f4905f60018060401b03910161015c565b60018060401b036102317fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d291610228610043565b91829182610189565b0390a15f6101de565b5f63f92ee8a960e01b815280610252600482016100dc565b0390fd5b61025e6102b3565b90565b5f90565b90565b90565b61027f61027a61028492610265565b61011d565b610268565b90565b6102b07ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0061026b565b90565b6102bb610261565b506102c4610287565b9056fe60806040526004361015610013575b61147f565b61001d5f356101fc565b80630a1028c4146101f75780632ede662f146101f2578063313ce567146101ed57806349a1a4fb146101e85780634a643499146101e35780634e08ff5f146101de5780634f1ef286146101d957806350d25bcd146101d457806352d1902d146101cf5780635b69a7d8146101ca5780635d24004f146101c5578063668a0f02146101c05780636c3ff133146101bb578063715018a6146101b65780637284e416146101b15780637a1395aa146101ac5780638205bf6a146101a75780638d068043146101a25780638da5cb5b1461019d57806390c3f38f146101985780639a6fc8f514610193578063ad3cb1cc1461018e578063b5ab58dc14610189578063b633620c14610184578063d608ea641461017f578063db2966021461017a578063df5dd1a514610175578063f2fde38b14610170578063fdc85fc41461016b5763feaf968c0361000e57611446565b6113b9565b611386565b611353565b61131e565b611217565b6111e2565b6111ad565b611178565b6110c7565b611056565b611021565b610fec565b610fb7565b610f84565b610f31565b610eef565b610ebc565b610e52565b610e08565b610dc4565b610c7d565b610c48565b610c09565b610b8d565b610971565b610797565b610569565b6104d1565b6102ba565b60e01c90565b60405190565b5f80fd5b5f80fd5b5f80fd5b5f80fd5b5f80fd5b5f80fd5b909182601f8301121561025a5781359167ffffffffffffffff831161025557602001926001830284011161025057565b61021c565b610218565b610214565b90602082820312610290575f82013567ffffffffffffffff811161028b576102879201610220565b9091565b610210565b61020c565b90565b6102a190610295565b9052565b91906102b8905f60208501940190610298565b565b346102eb576102e76102d66102d036600461025f565b9061149f565b6102de610202565b918291826102a5565b0390f35b610208565b69ffffffffffffffffffff1690565b610308816102f0565b0361030f57565b5f80fd5b90503590610320826102ff565b565b9060208282031261033b57610338915f01610313565b90565b61020c565b90565b61035761035261035c926102f0565b610340565b6102f0565b90565b9061036990610343565b5f5260205260405f2090565b5f1c90565b90565b61038961038e91610375565b61037a565b90565b61039b905461037d565b90565b90565b6103ad6103b291610375565b61039e565b90565b6103bf90546103a1565b90565b60ff1690565b6103d46103d991610375565b6103c2565b90565b6103e690546103c8565b90565b6103f490600361035f565b906104005f8301610391565b9161040d600182016103b5565b9161041a600283016103b5565b91610427600382016103b5565b916104406005610439600485016103b5565b93016103dc565b90565b90565b61044f90610443565b9052565b90565b61045f90610453565b9052565b60ff1690565b61047290610463565b9052565b91946104be6104c8929897956104b460a0966104aa6104cf9a6104a060c08a019e5f8b0190610446565b6020890190610456565b6040870190610456565b6060850190610456565b6080830190610456565b0190610469565b565b34610508576105046104ec6104e7366004610322565b6103e9565b926104fb969496929192610202565b96879687610476565b0390f35b610208565b5f91031261051757565b61020c565b1c90565b610530906008610535930261051c565b6103c2565b90565b906105439154610520565b90565b6105515f5f90610538565b90565b9190610567905f60208501940190610469565b565b346105995761057936600461050d565b610595610584610546565b61058c610202565b91829182610554565b0390f35b610208565b5f80fd5b601f801991011690565b634e487b7160e01b5f52604160045260245ffd5b906105ca906105a2565b810190811067ffffffffffffffff8211176105e457604052565b6105ac565b906105fc6105f5610202565b92836105c0565b565b67ffffffffffffffff811161061c576106186020916105a2565b0190565b6105ac565b90825f939282370152565b9092919261064161063c826105fe565b6105e9565b9381855260208501908284011161065d5761065b92610621565b565b61059e565b9080601f830112156106805781602061067d9335910161062c565b90565b610214565b67ffffffffffffffff811161069d5760208091020190565b6105ac565b9291906106b66106b182610685565b6105e9565b938185526020808601920281019183831161070d5781905b8382106106dc575050505050565b813567ffffffffffffffff8111610708576020916106fd8784938701610662565b8152019101906106ce565b610214565b61021c565b9080601f830112156107305781602061072d933591016106a2565b90565b610214565b91909160408184031261078d575f81013567ffffffffffffffff81116107885783610761918301610662565b92602082013567ffffffffffffffff8111610783576107809201610712565b90565b610210565b610210565b61020c565b5f0190565b346107c6576107b06107aa366004610735565b906119e0565b6107b8610202565b806107c281610792565b0390f35b610208565b634e487b7160e01b5f525f60045260245ffd5b634e487b7160e01b5f52602260045260245ffd5b9060016002830492168015610812575b602083101461080d57565b6107de565b91607f1691610802565b60209181520190565b5f5260205f2090565b905f9291805490610848610841836107f2565b809461081c565b916001811690815f1461089f5750600114610863575b505050565b6108709192939450610825565b915f925b81841061088757505001905f808061085e565b60018160209295939554848601520191019290610874565b92949550505060ff19168252151560200201905f808061085e565b906108c49161082e565b90565b906108e76108e0926108d7610202565b938480926108ba565b03836105c0565b565b905f106108fc576108f9906108c7565b90565b6107cb565b61090d60075f906108e9565b90565b5190565b60209181520190565b90825f9392825e0152565b6109476109506020936109559361093e81610910565b93848093610914565b9586910161091d565b6105a2565b0190565b61096e9160208201915f818403910152610928565b90565b346109a15761098136600461050d565b61099d61098c610901565b610994610202565b91829182610959565b0390f35b610208565b6109af81610463565b036109b657565b5f80fd5b905035906109c7826109a6565b565b67ffffffffffffffff81116109e7576109e36020916105a2565b0190565b6105ac565b90929192610a016109fc826109c9565b6105e9565b93818552602085019082840111610a1d57610a1b92610621565b565b61059e565b9080601f83011215610a4057816020610a3d933591016109ec565b90565b610214565b60018060a01b031690565b610a5990610a45565b90565b610a6581610a50565b03610a6c57565b5f80fd5b90503590610a7d82610a5c565b565b67ffffffffffffffff8111610a975760208091020190565b6105ac565b90929192610ab1610aac82610a7f565b6105e9565b9381855260208086019202830192818411610aee57915b838310610ad55750505050565b60208091610ae38486610a70565b815201920191610ac8565b61021c565b9080601f83011215610b1157816020610b0e93359101610a9c565b90565b610214565b90608082820312610b8857610b2d815f84016109ba565b92602083013567ffffffffffffffff8111610b835782610b4e918501610a22565b92610b5c8360408301610a70565b92606082013567ffffffffffffffff8111610b7e57610b7b9201610af3565b90565b610210565b610210565b61020c565b34610bbf57610ba9610ba0366004610b16565b9291909161247b565b610bb1610202565b80610bbb81610792565b0390f35b610208565b919091604081840312610c0457610bdd835f8301610a70565b92602082013567ffffffffffffffff8111610bff57610bfc9201610662565b90565b610210565b61020c565b610c1d610c17366004610bc4565b906124b2565b610c25610202565b80610c2f81610792565b0390f35b9190610c46905f60208501940190610446565b565b34610c7857610c5836600461050d565b610c74610c636124c2565b610c6b610202565b91829182610c33565b0390f35b610208565b34610cad57610c8d36600461050d565b610ca9610c98612558565b610ca0610202565b918291826102a5565b0390f35b610208565b610cbb81610453565b03610cc257565b5f80fd5b90503590610cd382610cb2565b565b90602082820312610cee57610ceb915f01610cc6565b90565b61020c565b634e487b7160e01b5f52603260045260245ffd5b5490565b5f5260205f2090565b5f5260205f2090565b610d2681610d07565b821015610d4057610d38600191610d0b565b910201905f90565b610cf3565b60018060a01b031690565b610d60906008610d65930261051c565b610d45565b90565b90610d739154610d50565b90565b6005610d8181610d07565b821015610d9e57610d9b91610d9591610d1d565b90610d68565b90565b5f80fd5b610dab90610a50565b9052565b9190610dc2905f60208501940190610da2565b565b34610df457610df0610ddf610dda366004610cd5565b610d76565b610de7610202565b91829182610daf565b0390f35b610208565b610e0560065f90610d68565b90565b34610e3857610e1836600461050d565b610e34610e23610df9565b610e2b610202565b91829182610daf565b0390f35b610208565b9190610e50905f60208501940190610456565b565b34610e8257610e6236600461050d565b610e7e610e6d612587565b610e75610202565b91829182610e3d565b0390f35b610208565b90602082820312610eb7575f82013567ffffffffffffffff8111610eb257610eaf9201610a22565b90565b610210565b61020c565b34610eea57610ed4610ecf366004610e87565b6125c5565b610edc610202565b80610ee681610792565b0390f35b610208565b34610f1d57610eff36600461050d565b610f0761261d565b610f0f610202565b80610f1981610792565b0390f35b610208565b610f2e60015f906108e9565b90565b34610f6157610f4136600461050d565b610f5d610f4c610f22565b610f54610202565b91829182610959565b0390f35b610208565b90602082820312610f7f57610f7c915f016109ba565b90565b61020c565b34610fb257610f9c610f97366004610f66565b612646565b610fa4610202565b80610fae81610792565b0390f35b610208565b34610fe757610fc736600461050d565b610fe3610fd2612651565b610fda610202565b91829182610e3d565b0390f35b610208565b3461101c57610ffc36600461050d565b611018611007612742565b61100f610202565b91829182610e3d565b0390f35b610208565b346110515761103136600461050d565b61104d61103c6127e1565b611044610202565b91829182610daf565b0390f35b610208565b346110845761106e611069366004610e87565b61281f565b611076610202565b8061108081610792565b0390f35b610208565b6110be6110c5946110b46060949897956110aa608086019a5f870190610446565b6020850190610456565b6040830190610456565b0190610456565b565b346110fb576110f76110e26110dd366004610322565b61282d565b906110ee949294610202565b94859485611089565b0390f35b610208565b9061111261110d836109c9565b6105e9565b918252565b5f7f352e302e30000000000000000000000000000000000000000000000000000000910152565b6111486005611100565b9061115560208301611117565b565b61115f61113e565b90565b61116a611157565b90565b611175611162565b90565b346111a85761118836600461050d565b6111a461119361116d565b61119b610202565b91829182610959565b0390f35b610208565b346111dd576111d96111c86111c3366004610cd5565b612915565b6111d0610202565b91829182610c33565b0390f35b610208565b346112125761120e6111fd6111f8366004610cd5565b61299e565b611205610202565b91829182610e3d565b0390f35b610208565b346112455761122f61122a366004610e87565b612b59565b611237610202565b8061124181610792565b0390f35b610208565b9060208282031261126357611260915f01610a70565b90565b61020c565b61127c61127761128192610a45565b610340565b610a45565b90565b61128d90611268565b90565b61129990611284565b90565b906112a690611290565b5f5260205260405f2090565b60ff1690565b6112c89060086112cd930261051c565b6112b2565b90565b906112db91546112b8565b90565b6112f4906112ef6004915f9261129c565b6112d0565b90565b151590565b611305906112f7565b9052565b919061131c905f602085019401906112fc565b565b3461134e5761134a61133961133436600461124a565b6112de565b611341610202565b91829182611309565b0390f35b610208565b346113815761136b61136636600461124a565b612c16565b611373610202565b8061137d81610792565b0390f35b610208565b346113b45761139e61139936600461124a565b612c86565b6113a6610202565b806113b081610792565b0390f35b610208565b346113e7576113d16113cc36600461124a565b612e54565b6113d9610202565b806113e381610792565b0390f35b610208565b6113f5906102f0565b9052565b909594926114449461143361143d9261142960809661141f60a088019c5f8901906113ec565b6020870190610446565b6040850190610456565b6060830190610456565b01906113ec565b565b3461147a5761145636600461050d565b611476611461612e63565b9161146d959395610202565b958695866113f9565b0390f35b610208565b5f80fd5b5f90565b61149291369161062c565b90565b60200190565b5190565b906114b2916114ac611483565b50611487565b6114c46114be8261149b565b91611495565b2090565b6114d181610295565b036114d857565b5f80fd5b905051906114e9826114c8565b565b6114f481610443565b036114fb57565b5f80fd5b9050519061150c826114eb565b565b9050519061151b82610cb2565b565b60808183031261155e57611533825f83016114dc565b9261155b61154484602085016114ff565b93611552816040860161150e565b9360600161150e565b90565b61020c565b90565b60209181520190565b905f9291805490611589611582836107f2565b8094611566565b916001811690815f146115e057506001146115a4575b505050565b6115b19192939450610d14565b915f925b8184106115c857505001905f808061159f565b600181602092959395548486015201910192906115b5565b92949550505060ff19168252151560200201905f808061159f565b906116059161156f565b90565b9061162861162192611618610202565b938480926115fb565b03836105c0565b565b61163390611608565b90565b69ffffffffffffffffffff1690565b61165161165691610375565b611636565b90565b6116639054611645565b90565b90565b61167d61167861168292611666565b610340565b610453565b90565b634e487b7160e01b5f52601160045260245ffd5b6116a86116ae91939293610453565b92610453565b82018092116116b957565b611685565b90565b6116d56116d06116da926116be565b610340565b610453565b90565b90565b6116f46116ef6116f9926116dd565b610340565b610453565b90565b61170b61171191939293610453565b92610453565b820391821161171c57565b611685565b61172a906102f0565b69ffffffffffffffffffff81146117415760010190565b611685565b5f1b90565b9061176069ffffffffffffffffffff91611746565b9181191691161790565b90565b9061178261177d61178992610343565b61176a565b825461174b565b9055565b6117a161179c6117a692610453565b610340565b610463565b90565b6117b360c06105e9565b90565b906117c090610443565b9052565b906117ce90610453565b9052565b906117dc90610463565b9052565b6117ea9051610443565b90565b906117f95f1991611746565b9181191691161790565b61181761181261181c92610443565b610340565b610443565b90565b90565b9061183761183261183e92611803565b61181f565b82546117ed565b9055565b61184c9051610453565b90565b61186361185e61186892610453565b610340565b610453565b90565b90565b9061188361187e61188a9261184f565b61186b565b82546117ed565b9055565b6118989051610463565b90565b906118a760ff91611746565b9181191691161790565b6118c56118c06118ca92610463565b610340565b610463565b90565b90565b906118e56118e06118ec926118b1565b6118cd565b825461189b565b9055565b9061197f60a06005611985946119135f820161190d5f88016117e0565b90611822565b61192c6001820161192660208801611842565b9061186e565b6119456002820161193f60408801611842565b9061186e565b61195e6003820161195860608801611842565b9061186e565b6119776004820161197160808801611842565b9061186e565b01920161188e565b906118d0565b565b90611991916118f0565b565b909594926119de946119cd6119d7926119c36080966119b960a088019c5f890190610446565b6020870190610456565b6040850190610456565b6060830190610da2565b0190610456565b565b906119fb8260206119f08261149b565b81830101910161151d565b94919293909392939492611a3b611a35611a1d611a186007611563565b61162a565b611a2f611a298261149b565b91611495565b20610295565b91610295565b03611cdb5782611a71611a6b611a666002611a606003611a5a83611659565b9061035f565b016103b5565b610453565b91610453565b1115611cbf5782611a9e611a98611a9342611a8d61012c611669565b90611699565b610453565b91610453565b11611ca35742611ab8611ab2610e106116c1565b91610453565b115f14611c9557611ad442611ace610e106116c1565b906116fc565b5b611ae8611ae28592610453565b91610453565b10611c7957611b0991611b03611afd8261149b565b91611495565b20612f70565b9283611b24611b1e611b19612742565b610453565b91610453565b10611c5d57611b336002611659565b611b4f611b4969ffffffffffffffffffff6102f0565b916102f0565b14611c4157611b70611b69611b646002611659565b611721565b600261176d565b611bee83611bd483611bcb88611bc288611bb94391611bb0611b92429661178d565b97611ba7611b9e6117a9565b9b5f8d016117b6565b60208b016117c4565b604089016117c4565b606087016117c4565b608085016117c4565b60a083016117d2565b611be96003611be36002611659565b9061035f565b611987565b611c3c611bfb6002611659565b9391929433611c2a7f0b62719df03f34f9cd4469266344b26b09b76d94a1c2cc1a6a0f0d460cc8b7d196610343565b96611c33610202565b95869586611993565b0390a2565b5f630cf2795360e41b815280611c5960048201610792565b0390fd5b5f633724e34360e11b815280611c7560048201610792565b0390fd5b5f63d40fc74b60e01b815280611c9160048201610792565b0390fd5b611c9e5f6116e0565b611ad5565b5f63364b8df560e11b815280611cbb60048201610792565b0390fd5b5f63f0022dfb60e01b815280611cd760048201610792565b0390fd5b5f63c2a25c1b60e01b815280611cf360048201610792565b0390fd5b60401c90565b611d09611d0e91611cf7565b6112b2565b90565b611d1b9054611cfd565b90565b67ffffffffffffffff1690565b611d37611d3c91610375565b611d1e565b90565b611d499054611d2b565b90565b67ffffffffffffffff1690565b611d6d611d68611d72926116dd565b610340565b611d4c565b90565b90565b611d8c611d87611d9192611d75565b610340565b611d4c565b90565b611d9d90611284565b90565b90611db367ffffffffffffffff91611746565b9181191691161790565b611dd1611dcc611dd692611d4c565b610340565b611d4c565b90565b90565b90611df1611dec611df892611dbd565b611dd9565b8254611da0565b9055565b60401b90565b90611e1668ff000000000000000091611dfc565b9181191691161790565b611e29906112f7565b90565b90565b90611e44611e3f611e4b92611e20565b611e2c565b8254611e02565b9055565b611e5890611d78565b9052565b9190611e6f905f60208501940190611e4f565b565b909192611e7c6130e0565b93611e91611e8b5f8701611d11565b156112f7565b93611e9d5f8701611d3f565b80611eb0611eaa5f611d59565b91611d4c565b1480611fca575b90611ecb611ec56001611d78565b91611d4c565b1480611fa2575b611edd9091156112f7565b9081611f91575b50611f7557611f0d93611f02611efa6001611d78565b5f8901611ddc565b85611f63575b61238c565b611f15575b50565b611f22905f809101611e2f565b6001611f5a7fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d291611f51610202565b91829182611e5c565b0390a15f611f12565b611f7060015f8901611e2f565b611f08565b5f63f92ee8a960e01b815280611f8d60048201610792565b0390fd5b611f9c9150156112f7565b5f611ee4565b50611edd611faf30611d94565b3b611fc2611fbc5f6116e0565b91610453565b149050611ed2565b5085611eb7565b601f602091010490565b1b90565b91906008611ffa910291611ff45f1984611fdb565b92611fdb565b9181191691161790565b919061201a6120156120229361184f565b61186b565b908354611fdf565b9055565b5f90565b61203c91612036612026565b91612004565b565b5b81811061204a575050565b806120575f60019361202a565b0161203f565b9190601f811161206d575b505050565b61207961209e93610825565b90602061208584611fd1565b830193106120a6575b61209790611fd1565b019061203e565b5f8080612068565b91506120978192905061208e565b906120c4905f199060080261051c565b191690565b816120d3916120b4565b906002021790565b906120e581610910565b9067ffffffffffffffff82116121a5576121098261210385546107f2565b8561205d565b602090601f831160011461213d5791809161212c935f92612131575b50506120c9565b90555b565b90915001515f80612125565b601f1983169161214c85610825565b925f5b81811061218d57509160029391856001969410612173575b5050500201905561212f565b612183910151601f8416906120b4565b90555f8080612167565b9193602060018192878701518155019501920161214f565b6105ac565b906121b4916120db565b565b9190601f81116121c6575b505050565b6121d26121f793610d14565b9060206121de84611fd1565b830193106121ff575b6121f090611fd1565b019061203e565b5f80806121c1565b91506121f0819290506121e7565b6122215f61221b83546107f2565b836121b6565b5f80019055565b6122319061220d565b565b61224761224261224c926116dd565b610340565b6102f0565b90565b600161225b9101610453565b90565b5190565b9061226c8261225e565b81101561227d576020809102010190565b610cf3565b61228c9051610a50565b90565b61229b6122a091610375565b6112b2565b90565b6122ad905461228f565b90565b906122c56122c06122cc92611e20565b611e2c565b825461189b565b9055565b90565b5f5260205f2090565b5490565b6122e9816122dc565b821015612303576122fb6001916122d3565b910201905f90565b610cf3565b9190600861232891029161232260018060a01b0384611fdb565b92611fdb565b9181191691161790565b90565b919061234b61234661235393611290565b612332565b908354612308565b9055565b9081549168010000000000000000831015612387578261237f916001612385950181556122e0565b90612335565b565b6105ac565b6123aa9061239c6123b194613109565b6123a461311e565b5f6118d0565b60016121aa565b6123bb6007612228565b6123ce6123c75f612233565b600261176d565b6123d75f6116e0565b5b806123f36123ed6123e88561225e565b610453565b91610453565b10156124775761240c612407838390612262565b612282565b9061242161241c6004849061129c565b6122a3565b61245b5761245161245692612442600161243d6004849061129c565b6122b0565b61244c60056122d0565b612357565b61224f565b6123d8565b5f636586df7960e01b81528061247360048201610792565b0390fd5b5050565b90612487939291611e71565b565b9061249b91612496613134565b61249d565b565b906124b0916124ab816131e6565b613249565b565b906124bc91612489565b565b5f90565b6124ca6124be565b506124ea5f6124e460036124de6002611659565b9061035f565b01610391565b90565b6124fe906124f9613347565b61254c565b90565b90565b61251861251361251d92612501565b611746565b610295565b90565b6125497f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc612504565b90565b50612555612520565b90565b612568612563611483565b6124ed565b90565b61257f61257a612584926102f0565b610340565b610453565b90565b61258f612026565b506125a261259d6002611659565b61256b565b90565b6125b6906125b16133a5565b6125b8565b565b6125c39060076121aa565b565b6125ce906125a5565b565b6125d86133a5565b6125e061260a565b565b6125f66125f16125fb926116dd565b610340565b610a45565b90565b612607906125e2565b90565b61261b6126165f6125fe565b61342e565b565b6126256125d0565b565b612638906126336133a5565b61263a565b565b612644905f6118d0565b565b61264f90612627565b565b612659612026565b5061267a6004612674600361266e6002611659565b9061035f565b016103b5565b90565b90565b61269461268f6126999261267d565b610340565b610453565b90565b6126ab6126b191939293610453565b92610453565b916126bd838202610453565b9281840414901517156126cc57565b611685565b90565b6126e86126e36126ed926126d1565b610340565b610453565b90565b634e487b7160e01b5f52601260045260245ffd5b61271061271691610453565b91610453565b908115612721570490565b6126f0565b61273a61273561273f92611d75565b610340565b610453565b90565b61274a612026565b5061278e61277e61276e61275e6005610d07565b6127686002612680565b9061269c565b6127786002612680565b90611699565b61278860036126d4565b90612704565b806127a161279b5f6116e0565b91610453565b115f146127ac575b90565b506127b76001612726565b6127a9565b5f90565b6127cc6127d191610375565b610d45565b90565b6127de90546127c0565b90565b6127e96127bc565b506127fc5f6127f661349a565b016127d4565b90565b6128109061280b6133a5565b612812565b565b61281d9060016121aa565b565b612828906127ff565b565b90565b6128356124be565b5061283e612026565b50612847612026565b50612850612026565b508061286461285e5f612233565b916102f0565b1480156128d6575b6128ba5761287e61288391600361035f565b61282a565b61288e5f8201610391565b61289a600183016103b5565b926128b360036128ac600286016103b5565b94016103b5565b9193929190565b5f633a800deb60e01b8152806128d260048201610792565b0390fd5b50806128f36128ed6128e86002611659565b6102f0565b916102f0565b1161286c565b61290d61290861291292610453565b610340565b6102f0565b90565b61291d6124be565b508061293161292b5f6116e0565b91610453565b14801561297b575b61295f575f61295661295c926129506003916128f9565b9061035f565b01610391565b90565b5f633a800deb60e01b81528061297760048201610792565b0390fd5b508061299861299261298d6002611659565b61256b565b91610453565b11612939565b6129a6612026565b50806129ba6129b45f6116e0565b91610453565b148015612a05575b6129e95760046129e06129e6926129da6003916128f9565b9061035f565b016103b5565b90565b5f633a800deb60e01b815280612a0160048201610792565b0390fd5b5080612a22612a1c612a176002611659565b61256b565b91610453565b116129c2565b612a3c612a37612a419261267d565b610340565b611d4c565b90565b612a4d90611d4c565b9052565b9190612a64905f60208501940190612a44565b565b612a706002612a28565b90612a796130e0565b612a845f8201611d11565b8015612b14575b612af857612ab4612abd92612aa2855f8501611ddc565b612aaf60015f8501611e2f565b612b39565b5f809101611e2f565b612af37fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d291612aea610202565b91829182612a51565b0390a1565b5f63f92ee8a960e01b815280612b1060048201610792565b0390fd5b50612b205f8201611d3f565b612b32612b2c85611d4c565b91611d4c565b1015612a8b565b612b4a90612b456133a5565b612b4c565b565b612b579060076121aa565b565b612b6290612a66565b565b612b7590612b706133a5565b612b77565b565b612b8b612b866004839061129c565b6122a3565b612bfa57612ba56001612ba06004849061129c565b6122b0565b612bb9612bb260056122d0565b8290612357565b612be27e47706786c922d17b39285dc59d696bafea72c0b003d3841ae1202076f4c2e491611290565b90612beb610202565b80612bf581610792565b0390a2565b5f636586df7960e01b815280612c1260048201610792565b0390fd5b612c1f90612b64565b565b612c3290612c2d6133a5565b612c34565b565b80612c4f612c49612c445f6125fe565b610a50565b91610a50565b14612c5f57612c5d9061342e565b565b612c82612c6b5f6125fe565b5f918291631e4fbdf760e01b835260048301610daf565b0390fd5b612c8f90612c21565b565b612ca290612c9d6133a5565b612cfb565b565b634e487b7160e01b5f52603160045260245ffd5b612cca91612cc46127bc565b91612335565b565b612cd5816122dc565b8015612cf6576001900390612cf3612ced83836122e0565b90612cb8565b55565b612ca4565b612d18612d12612d0d6004849061129c565b6122a3565b156112f7565b612e3857612d315f612d2c6004849061129c565b6122b0565b612d3a5f6116e0565b5b80612d57612d51612d4c6005610d07565b610453565b91610453565b1015612e3257612d72612d6c60058390610d1d565b90610d68565b612d84612d7e84610a50565b91610a50565b14612d9757612d929061224f565b612d3b565b612ddd90612dd7612dcf612dc96005612dc3612db36005610d07565b612dbd6001612726565b906116fc565b90610d1d565b90610d68565b916005610d1d565b90612335565b612def612dea60056122d0565b612ccc565b5b612e1a7f9c8e7d83025bef8a04c664b2f753f64b8814bdb7e27291d7e50935f18cc3c71291611290565b90612e23610202565b80612e2d81610792565b0390a2565b50612df0565b5f630b0a0e0d60e21b815280612e5060048201610792565b0390fd5b612e5d90612c91565b565b5f90565b612e6b612e5f565b50612e746124be565b50612e7d612026565b50612e86612026565b50612e8f612e5f565b50612e9a6002611659565b90612ea36124c2565b90612ec1612ebc6003612eb66002611659565b9061035f565b61282a565b90612eda6004612ed3600285016103b5565b93016103b5565b908490565b5190565b90612ef5612ef083610a7f565b6105e9565b918252565b369037565b90612f24612f0c83612ee3565b92602080612f1a8693610a7f565b9201910390612efa565b565b90612f3082612edf565b811015612f41576020809102010190565b610cf3565b90612f5090610a50565b9052565b612f5d90610453565b5f198114612f6b5760010190565b611685565b91612f79612026565b50612f8382612edf565b91612f8d5f6116e0565b90612f9784612eff565b92612fa15f6116e0565b945b85612fb6612fb083610453565b91610453565b10156130d657612fd287612fcb858990612f26565b51906134be565b92612ff0612fea612fe56004879061129c565b6122a3565b156112f7565b6130ba575f97612fff5f6116e0565b5b8061301361300d89610453565b91610453565b10156130a95761302c613027898390612262565b612282565b61303e61303888610a50565b91610a50565b146130515761304c9061224f565b613000565b50939094975061306660019792975b156112f7565b61307f575b506130759061224f565b9495929195612fa3565b613075919761309d6130a2926130988991849092612262565b612f46565b612f54565b969061306b565b509390949761306690979297613060565b5f631cb6602160e31b8152806130d260048201610792565b0390fd5b5094505091505090565b6130e861352b565b90565b6130fc906130f761353f565b6130fe565b565b613107906135d7565b565b613112906130eb565b565b61311c61353f565b565b613126613114565b565b61313190611284565b90565b61313d30613128565b61316f6131697f0000000000000000000000000000000000000000000000000000000000000000610a50565b91610a50565b148015613199575b61317d57565b5f63703e46dd60e11b81528061319560048201610792565b0390fd5b506131a26135e2565b6131d46131ce7f0000000000000000000000000000000000000000000000000000000000000000610a50565b91610a50565b1415613177565b506131e46133a5565b565b6131ef906131db565b565b6131fa90611268565b90565b613206906131f1565b90565b61321290611284565b90565b60e01b90565b9060208282031261323457613231915f016114dc565b90565b61020c565b613241610202565b3d5f823e3d90fd5b9190613277602061326161325c866131fd565b613209565b6352d1902d9061326f610202565b938492613215565b8252818061328760048201610792565b03915afa80915f92613317575b50155f146132c85750509060016132a957505b565b6132c4905f918291634c9c8ce360e01b835260048301610daf565b0390fd5b92836132e36132dd6132d8612520565b610295565b91610295565b036132f8576132f3929350613608565b6132a7565b613313845f918291632a87526960e21b8352600483016102a5565b0390fd5b61333991925060203d8111613340575b61333181836105c0565b81019061321b565b905f613294565b503d613327565b61335030613128565b61338261337c7f0000000000000000000000000000000000000000000000000000000000000000610a50565b91610a50565b0361338957565b5f63703e46dd60e11b8152806133a160048201610792565b0390fd5b6133ad6127e1565b6133c66133c06133bb613691565b610a50565b91610a50565b036133cd57565b6133ef6133d8613691565b5f91829163118cdaa760e01b835260048301610daf565b0390fd5b9061340460018060a01b0391611746565b9181191691161790565b9061342361341e61342a92611290565b612332565b82546133f3565b9055565b61343661349a565b61344e6134445f83016127d4565b915f84910161340e565b9061348261347c7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e093611290565b91611290565b9161348b610202565b8061349581610792565b0390a3565b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930090565b6134dd916134d4916134ce6127bc565b506136e1565b909291926137c9565b90565b90565b6134f76134f26134fc926134e0565b611746565b610295565b90565b6135287ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a006134e3565b90565b613533611483565b5061353c6134ff565b90565b61355061354a61389e565b156112f7565b61355657565b5f631afcd79f60e31b81528061356e60048201610792565b0390fd5b6135839061357e61353f565b613585565b565b806135a061359a6135955f6125fe565b610a50565b91610a50565b146135b0576135ae9061342e565b565b6135d36135bc5f6125fe565b5f918291631e4fbdf760e01b835260048301610daf565b0390fd5b6135e090613572565b565b6135ea6127bc565b506136055f6135ff6135fa612520565b6138bc565b016127d4565b90565b90613612826138bf565b8161363d7fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b91611290565b90613646610202565b8061365081610792565b0390a261365c8161149b565b61366e6136685f6116e0565b91610453565b115f146136825761367e9161398f565b505b565b505061368c613914565b613680565b6136996127bc565b503390565b5f90565b90565b6136b96136b46136be926136a2565b610340565b610453565b90565b6136d56136d06136da92610453565b611746565b610295565b90565b5f90565b9190916136ec6127bc565b506136f561369e565b506136fe611483565b506137088361149b565b61371b61371560416136a5565b91610453565b145f146137625761375b919261372f611483565b50613738611483565b506137416136dd565b506020810151606060408301519201515f1a909192613a37565b9192909190565b5061376c5f6125fe565b9061378061377b60029461149b565b6136c1565b91929190565b634e487b7160e01b5f52602160045260245ffd5b600411156137a457565b613786565b906137b38261379a565b565b6137c16137c691610375565b61184f565b90565b806137dc6137d65f6137a9565b916137a9565b145f146137e7575050565b806137fb6137f560016137a9565b916137a9565b145f1461381e575f63f645eedf60e01b81528061381a60048201610792565b0390fd5b8061383261382c60026137a9565b916137a9565b145f146138605761385c613845836137b5565b5f91829163fce698f760e01b835260048301610e3d565b0390fd5b61387361386d60036137a9565b916137a9565b1461387b5750565b613896905f9182916335e2f38360e21b8352600483016102a5565b0390fd5b5f90565b6138a661389a565b506138b95f6138b36130e0565b01611d11565b90565b90565b803b6138d36138cd5f6116e0565b91610453565b146138f5576138f3905f6138ed6138e8612520565b6138bc565b0161340e565b565b613910905f918291634c9c8ce360e01b835260048301610daf565b0390fd5b346139276139215f6116e0565b91610453565b1161392e57565b5f63b398979f60e01b81528061394660048201610792565b0390fd5b606090565b9061396161395c836105fe565b6105e9565b918252565b3d5f14613981576139763d61394f565b903d5f602084013e5b565b61398961394a565b9061397f565b5f806139bb9361399d61394a565b508390602081019051915af4906139b2613966565b90919091613b33565b90565b90565b6139d56139d06139da926139be565b610340565b610453565b90565b613a12613a1994613a086060949897956139fe608086019a5f870190610298565b6020850190610469565b6040830190610298565b0190610298565b565b613a2f613a2a613a34926116dd565b611746565b610295565b90565b939293613a426127bc565b50613a4b61369e565b50613a54611483565b50613a5e856137b5565b613a90613a8a7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06139c1565b91610453565b11613b1d5790613ab3602094955f94939293613aaa610202565b948594856139dd565b838052039060015afa15613b1857613acb5f51611746565b80613ae6613ae0613adb5f6125fe565b610a50565b91610a50565b14613afc575f91613af65f613a1b565b91929190565b50613b065f6125fe565b600191613b125f613a1b565b91929190565b613239565b505050613b295f6125fe565b9060039291929190565b90613b4790613b4061394a565b50156112f7565b5f14613b535750613bb7565b613b5c8261149b565b613b6e613b685f6116e0565b91610453565b1480613b9c575b613b7d575090565b613b98905f918291639996b31560e01b835260048301610daf565b0390fd5b50803b613bb1613bab5f6116e0565b91610453565b14613b75565b613bc08161149b565b613bd2613bcc5f6116e0565b91610453565b115f14613be157805190602001fd5b5f63d6bda27560e01b815280613bf960048201610792565b0390fdfea26469706673582212209de8f82d1c014ff899eb02d221cae989f60f6442b6513404c07034c01054027a64736f6c634300081d0033
Deployed Bytecode
0x60806040526004361015610013575b61147f565b61001d5f356101fc565b80630a1028c4146101f75780632ede662f146101f2578063313ce567146101ed57806349a1a4fb146101e85780634a643499146101e35780634e08ff5f146101de5780634f1ef286146101d957806350d25bcd146101d457806352d1902d146101cf5780635b69a7d8146101ca5780635d24004f146101c5578063668a0f02146101c05780636c3ff133146101bb578063715018a6146101b65780637284e416146101b15780637a1395aa146101ac5780638205bf6a146101a75780638d068043146101a25780638da5cb5b1461019d57806390c3f38f146101985780639a6fc8f514610193578063ad3cb1cc1461018e578063b5ab58dc14610189578063b633620c14610184578063d608ea641461017f578063db2966021461017a578063df5dd1a514610175578063f2fde38b14610170578063fdc85fc41461016b5763feaf968c0361000e57611446565b6113b9565b611386565b611353565b61131e565b611217565b6111e2565b6111ad565b611178565b6110c7565b611056565b611021565b610fec565b610fb7565b610f84565b610f31565b610eef565b610ebc565b610e52565b610e08565b610dc4565b610c7d565b610c48565b610c09565b610b8d565b610971565b610797565b610569565b6104d1565b6102ba565b60e01c90565b60405190565b5f80fd5b5f80fd5b5f80fd5b5f80fd5b5f80fd5b5f80fd5b909182601f8301121561025a5781359167ffffffffffffffff831161025557602001926001830284011161025057565b61021c565b610218565b610214565b90602082820312610290575f82013567ffffffffffffffff811161028b576102879201610220565b9091565b610210565b61020c565b90565b6102a190610295565b9052565b91906102b8905f60208501940190610298565b565b346102eb576102e76102d66102d036600461025f565b9061149f565b6102de610202565b918291826102a5565b0390f35b610208565b69ffffffffffffffffffff1690565b610308816102f0565b0361030f57565b5f80fd5b90503590610320826102ff565b565b9060208282031261033b57610338915f01610313565b90565b61020c565b90565b61035761035261035c926102f0565b610340565b6102f0565b90565b9061036990610343565b5f5260205260405f2090565b5f1c90565b90565b61038961038e91610375565b61037a565b90565b61039b905461037d565b90565b90565b6103ad6103b291610375565b61039e565b90565b6103bf90546103a1565b90565b60ff1690565b6103d46103d991610375565b6103c2565b90565b6103e690546103c8565b90565b6103f490600361035f565b906104005f8301610391565b9161040d600182016103b5565b9161041a600283016103b5565b91610427600382016103b5565b916104406005610439600485016103b5565b93016103dc565b90565b90565b61044f90610443565b9052565b90565b61045f90610453565b9052565b60ff1690565b61047290610463565b9052565b91946104be6104c8929897956104b460a0966104aa6104cf9a6104a060c08a019e5f8b0190610446565b6020890190610456565b6040870190610456565b6060850190610456565b6080830190610456565b0190610469565b565b34610508576105046104ec6104e7366004610322565b6103e9565b926104fb969496929192610202565b96879687610476565b0390f35b610208565b5f91031261051757565b61020c565b1c90565b610530906008610535930261051c565b6103c2565b90565b906105439154610520565b90565b6105515f5f90610538565b90565b9190610567905f60208501940190610469565b565b346105995761057936600461050d565b610595610584610546565b61058c610202565b91829182610554565b0390f35b610208565b5f80fd5b601f801991011690565b634e487b7160e01b5f52604160045260245ffd5b906105ca906105a2565b810190811067ffffffffffffffff8211176105e457604052565b6105ac565b906105fc6105f5610202565b92836105c0565b565b67ffffffffffffffff811161061c576106186020916105a2565b0190565b6105ac565b90825f939282370152565b9092919261064161063c826105fe565b6105e9565b9381855260208501908284011161065d5761065b92610621565b565b61059e565b9080601f830112156106805781602061067d9335910161062c565b90565b610214565b67ffffffffffffffff811161069d5760208091020190565b6105ac565b9291906106b66106b182610685565b6105e9565b938185526020808601920281019183831161070d5781905b8382106106dc575050505050565b813567ffffffffffffffff8111610708576020916106fd8784938701610662565b8152019101906106ce565b610214565b61021c565b9080601f830112156107305781602061072d933591016106a2565b90565b610214565b91909160408184031261078d575f81013567ffffffffffffffff81116107885783610761918301610662565b92602082013567ffffffffffffffff8111610783576107809201610712565b90565b610210565b610210565b61020c565b5f0190565b346107c6576107b06107aa366004610735565b906119e0565b6107b8610202565b806107c281610792565b0390f35b610208565b634e487b7160e01b5f525f60045260245ffd5b634e487b7160e01b5f52602260045260245ffd5b9060016002830492168015610812575b602083101461080d57565b6107de565b91607f1691610802565b60209181520190565b5f5260205f2090565b905f9291805490610848610841836107f2565b809461081c565b916001811690815f1461089f5750600114610863575b505050565b6108709192939450610825565b915f925b81841061088757505001905f808061085e565b60018160209295939554848601520191019290610874565b92949550505060ff19168252151560200201905f808061085e565b906108c49161082e565b90565b906108e76108e0926108d7610202565b938480926108ba565b03836105c0565b565b905f106108fc576108f9906108c7565b90565b6107cb565b61090d60075f906108e9565b90565b5190565b60209181520190565b90825f9392825e0152565b6109476109506020936109559361093e81610910565b93848093610914565b9586910161091d565b6105a2565b0190565b61096e9160208201915f818403910152610928565b90565b346109a15761098136600461050d565b61099d61098c610901565b610994610202565b91829182610959565b0390f35b610208565b6109af81610463565b036109b657565b5f80fd5b905035906109c7826109a6565b565b67ffffffffffffffff81116109e7576109e36020916105a2565b0190565b6105ac565b90929192610a016109fc826109c9565b6105e9565b93818552602085019082840111610a1d57610a1b92610621565b565b61059e565b9080601f83011215610a4057816020610a3d933591016109ec565b90565b610214565b60018060a01b031690565b610a5990610a45565b90565b610a6581610a50565b03610a6c57565b5f80fd5b90503590610a7d82610a5c565b565b67ffffffffffffffff8111610a975760208091020190565b6105ac565b90929192610ab1610aac82610a7f565b6105e9565b9381855260208086019202830192818411610aee57915b838310610ad55750505050565b60208091610ae38486610a70565b815201920191610ac8565b61021c565b9080601f83011215610b1157816020610b0e93359101610a9c565b90565b610214565b90608082820312610b8857610b2d815f84016109ba565b92602083013567ffffffffffffffff8111610b835782610b4e918501610a22565b92610b5c8360408301610a70565b92606082013567ffffffffffffffff8111610b7e57610b7b9201610af3565b90565b610210565b610210565b61020c565b34610bbf57610ba9610ba0366004610b16565b9291909161247b565b610bb1610202565b80610bbb81610792565b0390f35b610208565b919091604081840312610c0457610bdd835f8301610a70565b92602082013567ffffffffffffffff8111610bff57610bfc9201610662565b90565b610210565b61020c565b610c1d610c17366004610bc4565b906124b2565b610c25610202565b80610c2f81610792565b0390f35b9190610c46905f60208501940190610446565b565b34610c7857610c5836600461050d565b610c74610c636124c2565b610c6b610202565b91829182610c33565b0390f35b610208565b34610cad57610c8d36600461050d565b610ca9610c98612558565b610ca0610202565b918291826102a5565b0390f35b610208565b610cbb81610453565b03610cc257565b5f80fd5b90503590610cd382610cb2565b565b90602082820312610cee57610ceb915f01610cc6565b90565b61020c565b634e487b7160e01b5f52603260045260245ffd5b5490565b5f5260205f2090565b5f5260205f2090565b610d2681610d07565b821015610d4057610d38600191610d0b565b910201905f90565b610cf3565b60018060a01b031690565b610d60906008610d65930261051c565b610d45565b90565b90610d739154610d50565b90565b6005610d8181610d07565b821015610d9e57610d9b91610d9591610d1d565b90610d68565b90565b5f80fd5b610dab90610a50565b9052565b9190610dc2905f60208501940190610da2565b565b34610df457610df0610ddf610dda366004610cd5565b610d76565b610de7610202565b91829182610daf565b0390f35b610208565b610e0560065f90610d68565b90565b34610e3857610e1836600461050d565b610e34610e23610df9565b610e2b610202565b91829182610daf565b0390f35b610208565b9190610e50905f60208501940190610456565b565b34610e8257610e6236600461050d565b610e7e610e6d612587565b610e75610202565b91829182610e3d565b0390f35b610208565b90602082820312610eb7575f82013567ffffffffffffffff8111610eb257610eaf9201610a22565b90565b610210565b61020c565b34610eea57610ed4610ecf366004610e87565b6125c5565b610edc610202565b80610ee681610792565b0390f35b610208565b34610f1d57610eff36600461050d565b610f0761261d565b610f0f610202565b80610f1981610792565b0390f35b610208565b610f2e60015f906108e9565b90565b34610f6157610f4136600461050d565b610f5d610f4c610f22565b610f54610202565b91829182610959565b0390f35b610208565b90602082820312610f7f57610f7c915f016109ba565b90565b61020c565b34610fb257610f9c610f97366004610f66565b612646565b610fa4610202565b80610fae81610792565b0390f35b610208565b34610fe757610fc736600461050d565b610fe3610fd2612651565b610fda610202565b91829182610e3d565b0390f35b610208565b3461101c57610ffc36600461050d565b611018611007612742565b61100f610202565b91829182610e3d565b0390f35b610208565b346110515761103136600461050d565b61104d61103c6127e1565b611044610202565b91829182610daf565b0390f35b610208565b346110845761106e611069366004610e87565b61281f565b611076610202565b8061108081610792565b0390f35b610208565b6110be6110c5946110b46060949897956110aa608086019a5f870190610446565b6020850190610456565b6040830190610456565b0190610456565b565b346110fb576110f76110e26110dd366004610322565b61282d565b906110ee949294610202565b94859485611089565b0390f35b610208565b9061111261110d836109c9565b6105e9565b918252565b5f7f352e302e30000000000000000000000000000000000000000000000000000000910152565b6111486005611100565b9061115560208301611117565b565b61115f61113e565b90565b61116a611157565b90565b611175611162565b90565b346111a85761118836600461050d565b6111a461119361116d565b61119b610202565b91829182610959565b0390f35b610208565b346111dd576111d96111c86111c3366004610cd5565b612915565b6111d0610202565b91829182610c33565b0390f35b610208565b346112125761120e6111fd6111f8366004610cd5565b61299e565b611205610202565b91829182610e3d565b0390f35b610208565b346112455761122f61122a366004610e87565b612b59565b611237610202565b8061124181610792565b0390f35b610208565b9060208282031261126357611260915f01610a70565b90565b61020c565b61127c61127761128192610a45565b610340565b610a45565b90565b61128d90611268565b90565b61129990611284565b90565b906112a690611290565b5f5260205260405f2090565b60ff1690565b6112c89060086112cd930261051c565b6112b2565b90565b906112db91546112b8565b90565b6112f4906112ef6004915f9261129c565b6112d0565b90565b151590565b611305906112f7565b9052565b919061131c905f602085019401906112fc565b565b3461134e5761134a61133961133436600461124a565b6112de565b611341610202565b91829182611309565b0390f35b610208565b346113815761136b61136636600461124a565b612c16565b611373610202565b8061137d81610792565b0390f35b610208565b346113b45761139e61139936600461124a565b612c86565b6113a6610202565b806113b081610792565b0390f35b610208565b346113e7576113d16113cc36600461124a565b612e54565b6113d9610202565b806113e381610792565b0390f35b610208565b6113f5906102f0565b9052565b909594926114449461143361143d9261142960809661141f60a088019c5f8901906113ec565b6020870190610446565b6040850190610456565b6060830190610456565b01906113ec565b565b3461147a5761145636600461050d565b611476611461612e63565b9161146d959395610202565b958695866113f9565b0390f35b610208565b5f80fd5b5f90565b61149291369161062c565b90565b60200190565b5190565b906114b2916114ac611483565b50611487565b6114c46114be8261149b565b91611495565b2090565b6114d181610295565b036114d857565b5f80fd5b905051906114e9826114c8565b565b6114f481610443565b036114fb57565b5f80fd5b9050519061150c826114eb565b565b9050519061151b82610cb2565b565b60808183031261155e57611533825f83016114dc565b9261155b61154484602085016114ff565b93611552816040860161150e565b9360600161150e565b90565b61020c565b90565b60209181520190565b905f9291805490611589611582836107f2565b8094611566565b916001811690815f146115e057506001146115a4575b505050565b6115b19192939450610d14565b915f925b8184106115c857505001905f808061159f565b600181602092959395548486015201910192906115b5565b92949550505060ff19168252151560200201905f808061159f565b906116059161156f565b90565b9061162861162192611618610202565b938480926115fb565b03836105c0565b565b61163390611608565b90565b69ffffffffffffffffffff1690565b61165161165691610375565b611636565b90565b6116639054611645565b90565b90565b61167d61167861168292611666565b610340565b610453565b90565b634e487b7160e01b5f52601160045260245ffd5b6116a86116ae91939293610453565b92610453565b82018092116116b957565b611685565b90565b6116d56116d06116da926116be565b610340565b610453565b90565b90565b6116f46116ef6116f9926116dd565b610340565b610453565b90565b61170b61171191939293610453565b92610453565b820391821161171c57565b611685565b61172a906102f0565b69ffffffffffffffffffff81146117415760010190565b611685565b5f1b90565b9061176069ffffffffffffffffffff91611746565b9181191691161790565b90565b9061178261177d61178992610343565b61176a565b825461174b565b9055565b6117a161179c6117a692610453565b610340565b610463565b90565b6117b360c06105e9565b90565b906117c090610443565b9052565b906117ce90610453565b9052565b906117dc90610463565b9052565b6117ea9051610443565b90565b906117f95f1991611746565b9181191691161790565b61181761181261181c92610443565b610340565b610443565b90565b90565b9061183761183261183e92611803565b61181f565b82546117ed565b9055565b61184c9051610453565b90565b61186361185e61186892610453565b610340565b610453565b90565b90565b9061188361187e61188a9261184f565b61186b565b82546117ed565b9055565b6118989051610463565b90565b906118a760ff91611746565b9181191691161790565b6118c56118c06118ca92610463565b610340565b610463565b90565b90565b906118e56118e06118ec926118b1565b6118cd565b825461189b565b9055565b9061197f60a06005611985946119135f820161190d5f88016117e0565b90611822565b61192c6001820161192660208801611842565b9061186e565b6119456002820161193f60408801611842565b9061186e565b61195e6003820161195860608801611842565b9061186e565b6119776004820161197160808801611842565b9061186e565b01920161188e565b906118d0565b565b90611991916118f0565b565b909594926119de946119cd6119d7926119c36080966119b960a088019c5f890190610446565b6020870190610456565b6040850190610456565b6060830190610da2565b0190610456565b565b906119fb8260206119f08261149b565b81830101910161151d565b94919293909392939492611a3b611a35611a1d611a186007611563565b61162a565b611a2f611a298261149b565b91611495565b20610295565b91610295565b03611cdb5782611a71611a6b611a666002611a606003611a5a83611659565b9061035f565b016103b5565b610453565b91610453565b1115611cbf5782611a9e611a98611a9342611a8d61012c611669565b90611699565b610453565b91610453565b11611ca35742611ab8611ab2610e106116c1565b91610453565b115f14611c9557611ad442611ace610e106116c1565b906116fc565b5b611ae8611ae28592610453565b91610453565b10611c7957611b0991611b03611afd8261149b565b91611495565b20612f70565b9283611b24611b1e611b19612742565b610453565b91610453565b10611c5d57611b336002611659565b611b4f611b4969ffffffffffffffffffff6102f0565b916102f0565b14611c4157611b70611b69611b646002611659565b611721565b600261176d565b611bee83611bd483611bcb88611bc288611bb94391611bb0611b92429661178d565b97611ba7611b9e6117a9565b9b5f8d016117b6565b60208b016117c4565b604089016117c4565b606087016117c4565b608085016117c4565b60a083016117d2565b611be96003611be36002611659565b9061035f565b611987565b611c3c611bfb6002611659565b9391929433611c2a7f0b62719df03f34f9cd4469266344b26b09b76d94a1c2cc1a6a0f0d460cc8b7d196610343565b96611c33610202565b95869586611993565b0390a2565b5f630cf2795360e41b815280611c5960048201610792565b0390fd5b5f633724e34360e11b815280611c7560048201610792565b0390fd5b5f63d40fc74b60e01b815280611c9160048201610792565b0390fd5b611c9e5f6116e0565b611ad5565b5f63364b8df560e11b815280611cbb60048201610792565b0390fd5b5f63f0022dfb60e01b815280611cd760048201610792565b0390fd5b5f63c2a25c1b60e01b815280611cf360048201610792565b0390fd5b60401c90565b611d09611d0e91611cf7565b6112b2565b90565b611d1b9054611cfd565b90565b67ffffffffffffffff1690565b611d37611d3c91610375565b611d1e565b90565b611d499054611d2b565b90565b67ffffffffffffffff1690565b611d6d611d68611d72926116dd565b610340565b611d4c565b90565b90565b611d8c611d87611d9192611d75565b610340565b611d4c565b90565b611d9d90611284565b90565b90611db367ffffffffffffffff91611746565b9181191691161790565b611dd1611dcc611dd692611d4c565b610340565b611d4c565b90565b90565b90611df1611dec611df892611dbd565b611dd9565b8254611da0565b9055565b60401b90565b90611e1668ff000000000000000091611dfc565b9181191691161790565b611e29906112f7565b90565b90565b90611e44611e3f611e4b92611e20565b611e2c565b8254611e02565b9055565b611e5890611d78565b9052565b9190611e6f905f60208501940190611e4f565b565b909192611e7c6130e0565b93611e91611e8b5f8701611d11565b156112f7565b93611e9d5f8701611d3f565b80611eb0611eaa5f611d59565b91611d4c565b1480611fca575b90611ecb611ec56001611d78565b91611d4c565b1480611fa2575b611edd9091156112f7565b9081611f91575b50611f7557611f0d93611f02611efa6001611d78565b5f8901611ddc565b85611f63575b61238c565b611f15575b50565b611f22905f809101611e2f565b6001611f5a7fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d291611f51610202565b91829182611e5c565b0390a15f611f12565b611f7060015f8901611e2f565b611f08565b5f63f92ee8a960e01b815280611f8d60048201610792565b0390fd5b611f9c9150156112f7565b5f611ee4565b50611edd611faf30611d94565b3b611fc2611fbc5f6116e0565b91610453565b149050611ed2565b5085611eb7565b601f602091010490565b1b90565b91906008611ffa910291611ff45f1984611fdb565b92611fdb565b9181191691161790565b919061201a6120156120229361184f565b61186b565b908354611fdf565b9055565b5f90565b61203c91612036612026565b91612004565b565b5b81811061204a575050565b806120575f60019361202a565b0161203f565b9190601f811161206d575b505050565b61207961209e93610825565b90602061208584611fd1565b830193106120a6575b61209790611fd1565b019061203e565b5f8080612068565b91506120978192905061208e565b906120c4905f199060080261051c565b191690565b816120d3916120b4565b906002021790565b906120e581610910565b9067ffffffffffffffff82116121a5576121098261210385546107f2565b8561205d565b602090601f831160011461213d5791809161212c935f92612131575b50506120c9565b90555b565b90915001515f80612125565b601f1983169161214c85610825565b925f5b81811061218d57509160029391856001969410612173575b5050500201905561212f565b612183910151601f8416906120b4565b90555f8080612167565b9193602060018192878701518155019501920161214f565b6105ac565b906121b4916120db565b565b9190601f81116121c6575b505050565b6121d26121f793610d14565b9060206121de84611fd1565b830193106121ff575b6121f090611fd1565b019061203e565b5f80806121c1565b91506121f0819290506121e7565b6122215f61221b83546107f2565b836121b6565b5f80019055565b6122319061220d565b565b61224761224261224c926116dd565b610340565b6102f0565b90565b600161225b9101610453565b90565b5190565b9061226c8261225e565b81101561227d576020809102010190565b610cf3565b61228c9051610a50565b90565b61229b6122a091610375565b6112b2565b90565b6122ad905461228f565b90565b906122c56122c06122cc92611e20565b611e2c565b825461189b565b9055565b90565b5f5260205f2090565b5490565b6122e9816122dc565b821015612303576122fb6001916122d3565b910201905f90565b610cf3565b9190600861232891029161232260018060a01b0384611fdb565b92611fdb565b9181191691161790565b90565b919061234b61234661235393611290565b612332565b908354612308565b9055565b9081549168010000000000000000831015612387578261237f916001612385950181556122e0565b90612335565b565b6105ac565b6123aa9061239c6123b194613109565b6123a461311e565b5f6118d0565b60016121aa565b6123bb6007612228565b6123ce6123c75f612233565b600261176d565b6123d75f6116e0565b5b806123f36123ed6123e88561225e565b610453565b91610453565b10156124775761240c612407838390612262565b612282565b9061242161241c6004849061129c565b6122a3565b61245b5761245161245692612442600161243d6004849061129c565b6122b0565b61244c60056122d0565b612357565b61224f565b6123d8565b5f636586df7960e01b81528061247360048201610792565b0390fd5b5050565b90612487939291611e71565b565b9061249b91612496613134565b61249d565b565b906124b0916124ab816131e6565b613249565b565b906124bc91612489565b565b5f90565b6124ca6124be565b506124ea5f6124e460036124de6002611659565b9061035f565b01610391565b90565b6124fe906124f9613347565b61254c565b90565b90565b61251861251361251d92612501565b611746565b610295565b90565b6125497f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc612504565b90565b50612555612520565b90565b612568612563611483565b6124ed565b90565b61257f61257a612584926102f0565b610340565b610453565b90565b61258f612026565b506125a261259d6002611659565b61256b565b90565b6125b6906125b16133a5565b6125b8565b565b6125c39060076121aa565b565b6125ce906125a5565b565b6125d86133a5565b6125e061260a565b565b6125f66125f16125fb926116dd565b610340565b610a45565b90565b612607906125e2565b90565b61261b6126165f6125fe565b61342e565b565b6126256125d0565b565b612638906126336133a5565b61263a565b565b612644905f6118d0565b565b61264f90612627565b565b612659612026565b5061267a6004612674600361266e6002611659565b9061035f565b016103b5565b90565b90565b61269461268f6126999261267d565b610340565b610453565b90565b6126ab6126b191939293610453565b92610453565b916126bd838202610453565b9281840414901517156126cc57565b611685565b90565b6126e86126e36126ed926126d1565b610340565b610453565b90565b634e487b7160e01b5f52601260045260245ffd5b61271061271691610453565b91610453565b908115612721570490565b6126f0565b61273a61273561273f92611d75565b610340565b610453565b90565b61274a612026565b5061278e61277e61276e61275e6005610d07565b6127686002612680565b9061269c565b6127786002612680565b90611699565b61278860036126d4565b90612704565b806127a161279b5f6116e0565b91610453565b115f146127ac575b90565b506127b76001612726565b6127a9565b5f90565b6127cc6127d191610375565b610d45565b90565b6127de90546127c0565b90565b6127e96127bc565b506127fc5f6127f661349a565b016127d4565b90565b6128109061280b6133a5565b612812565b565b61281d9060016121aa565b565b612828906127ff565b565b90565b6128356124be565b5061283e612026565b50612847612026565b50612850612026565b508061286461285e5f612233565b916102f0565b1480156128d6575b6128ba5761287e61288391600361035f565b61282a565b61288e5f8201610391565b61289a600183016103b5565b926128b360036128ac600286016103b5565b94016103b5565b9193929190565b5f633a800deb60e01b8152806128d260048201610792565b0390fd5b50806128f36128ed6128e86002611659565b6102f0565b916102f0565b1161286c565b61290d61290861291292610453565b610340565b6102f0565b90565b61291d6124be565b508061293161292b5f6116e0565b91610453565b14801561297b575b61295f575f61295661295c926129506003916128f9565b9061035f565b01610391565b90565b5f633a800deb60e01b81528061297760048201610792565b0390fd5b508061299861299261298d6002611659565b61256b565b91610453565b11612939565b6129a6612026565b50806129ba6129b45f6116e0565b91610453565b148015612a05575b6129e95760046129e06129e6926129da6003916128f9565b9061035f565b016103b5565b90565b5f633a800deb60e01b815280612a0160048201610792565b0390fd5b5080612a22612a1c612a176002611659565b61256b565b91610453565b116129c2565b612a3c612a37612a419261267d565b610340565b611d4c565b90565b612a4d90611d4c565b9052565b9190612a64905f60208501940190612a44565b565b612a706002612a28565b90612a796130e0565b612a845f8201611d11565b8015612b14575b612af857612ab4612abd92612aa2855f8501611ddc565b612aaf60015f8501611e2f565b612b39565b5f809101611e2f565b612af37fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d291612aea610202565b91829182612a51565b0390a1565b5f63f92ee8a960e01b815280612b1060048201610792565b0390fd5b50612b205f8201611d3f565b612b32612b2c85611d4c565b91611d4c565b1015612a8b565b612b4a90612b456133a5565b612b4c565b565b612b579060076121aa565b565b612b6290612a66565b565b612b7590612b706133a5565b612b77565b565b612b8b612b866004839061129c565b6122a3565b612bfa57612ba56001612ba06004849061129c565b6122b0565b612bb9612bb260056122d0565b8290612357565b612be27e47706786c922d17b39285dc59d696bafea72c0b003d3841ae1202076f4c2e491611290565b90612beb610202565b80612bf581610792565b0390a2565b5f636586df7960e01b815280612c1260048201610792565b0390fd5b612c1f90612b64565b565b612c3290612c2d6133a5565b612c34565b565b80612c4f612c49612c445f6125fe565b610a50565b91610a50565b14612c5f57612c5d9061342e565b565b612c82612c6b5f6125fe565b5f918291631e4fbdf760e01b835260048301610daf565b0390fd5b612c8f90612c21565b565b612ca290612c9d6133a5565b612cfb565b565b634e487b7160e01b5f52603160045260245ffd5b612cca91612cc46127bc565b91612335565b565b612cd5816122dc565b8015612cf6576001900390612cf3612ced83836122e0565b90612cb8565b55565b612ca4565b612d18612d12612d0d6004849061129c565b6122a3565b156112f7565b612e3857612d315f612d2c6004849061129c565b6122b0565b612d3a5f6116e0565b5b80612d57612d51612d4c6005610d07565b610453565b91610453565b1015612e3257612d72612d6c60058390610d1d565b90610d68565b612d84612d7e84610a50565b91610a50565b14612d9757612d929061224f565b612d3b565b612ddd90612dd7612dcf612dc96005612dc3612db36005610d07565b612dbd6001612726565b906116fc565b90610d1d565b90610d68565b916005610d1d565b90612335565b612def612dea60056122d0565b612ccc565b5b612e1a7f9c8e7d83025bef8a04c664b2f753f64b8814bdb7e27291d7e50935f18cc3c71291611290565b90612e23610202565b80612e2d81610792565b0390a2565b50612df0565b5f630b0a0e0d60e21b815280612e5060048201610792565b0390fd5b612e5d90612c91565b565b5f90565b612e6b612e5f565b50612e746124be565b50612e7d612026565b50612e86612026565b50612e8f612e5f565b50612e9a6002611659565b90612ea36124c2565b90612ec1612ebc6003612eb66002611659565b9061035f565b61282a565b90612eda6004612ed3600285016103b5565b93016103b5565b908490565b5190565b90612ef5612ef083610a7f565b6105e9565b918252565b369037565b90612f24612f0c83612ee3565b92602080612f1a8693610a7f565b9201910390612efa565b565b90612f3082612edf565b811015612f41576020809102010190565b610cf3565b90612f5090610a50565b9052565b612f5d90610453565b5f198114612f6b5760010190565b611685565b91612f79612026565b50612f8382612edf565b91612f8d5f6116e0565b90612f9784612eff565b92612fa15f6116e0565b945b85612fb6612fb083610453565b91610453565b10156130d657612fd287612fcb858990612f26565b51906134be565b92612ff0612fea612fe56004879061129c565b6122a3565b156112f7565b6130ba575f97612fff5f6116e0565b5b8061301361300d89610453565b91610453565b10156130a95761302c613027898390612262565b612282565b61303e61303888610a50565b91610a50565b146130515761304c9061224f565b613000565b50939094975061306660019792975b156112f7565b61307f575b506130759061224f565b9495929195612fa3565b613075919761309d6130a2926130988991849092612262565b612f46565b612f54565b969061306b565b509390949761306690979297613060565b5f631cb6602160e31b8152806130d260048201610792565b0390fd5b5094505091505090565b6130e861352b565b90565b6130fc906130f761353f565b6130fe565b565b613107906135d7565b565b613112906130eb565b565b61311c61353f565b565b613126613114565b565b61313190611284565b90565b61313d30613128565b61316f6131697f000000000000000000000000a17887fd35b14a4c6e6ec87458591941934d444c610a50565b91610a50565b148015613199575b61317d57565b5f63703e46dd60e11b81528061319560048201610792565b0390fd5b506131a26135e2565b6131d46131ce7f000000000000000000000000a17887fd35b14a4c6e6ec87458591941934d444c610a50565b91610a50565b1415613177565b506131e46133a5565b565b6131ef906131db565b565b6131fa90611268565b90565b613206906131f1565b90565b61321290611284565b90565b60e01b90565b9060208282031261323457613231915f016114dc565b90565b61020c565b613241610202565b3d5f823e3d90fd5b9190613277602061326161325c866131fd565b613209565b6352d1902d9061326f610202565b938492613215565b8252818061328760048201610792565b03915afa80915f92613317575b50155f146132c85750509060016132a957505b565b6132c4905f918291634c9c8ce360e01b835260048301610daf565b0390fd5b92836132e36132dd6132d8612520565b610295565b91610295565b036132f8576132f3929350613608565b6132a7565b613313845f918291632a87526960e21b8352600483016102a5565b0390fd5b61333991925060203d8111613340575b61333181836105c0565b81019061321b565b905f613294565b503d613327565b61335030613128565b61338261337c7f000000000000000000000000a17887fd35b14a4c6e6ec87458591941934d444c610a50565b91610a50565b0361338957565b5f63703e46dd60e11b8152806133a160048201610792565b0390fd5b6133ad6127e1565b6133c66133c06133bb613691565b610a50565b91610a50565b036133cd57565b6133ef6133d8613691565b5f91829163118cdaa760e01b835260048301610daf565b0390fd5b9061340460018060a01b0391611746565b9181191691161790565b9061342361341e61342a92611290565b612332565b82546133f3565b9055565b61343661349a565b61344e6134445f83016127d4565b915f84910161340e565b9061348261347c7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e093611290565b91611290565b9161348b610202565b8061349581610792565b0390a3565b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930090565b6134dd916134d4916134ce6127bc565b506136e1565b909291926137c9565b90565b90565b6134f76134f26134fc926134e0565b611746565b610295565b90565b6135287ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a006134e3565b90565b613533611483565b5061353c6134ff565b90565b61355061354a61389e565b156112f7565b61355657565b5f631afcd79f60e31b81528061356e60048201610792565b0390fd5b6135839061357e61353f565b613585565b565b806135a061359a6135955f6125fe565b610a50565b91610a50565b146135b0576135ae9061342e565b565b6135d36135bc5f6125fe565b5f918291631e4fbdf760e01b835260048301610daf565b0390fd5b6135e090613572565b565b6135ea6127bc565b506136055f6135ff6135fa612520565b6138bc565b016127d4565b90565b90613612826138bf565b8161363d7fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b91611290565b90613646610202565b8061365081610792565b0390a261365c8161149b565b61366e6136685f6116e0565b91610453565b115f146136825761367e9161398f565b505b565b505061368c613914565b613680565b6136996127bc565b503390565b5f90565b90565b6136b96136b46136be926136a2565b610340565b610453565b90565b6136d56136d06136da92610453565b611746565b610295565b90565b5f90565b9190916136ec6127bc565b506136f561369e565b506136fe611483565b506137088361149b565b61371b61371560416136a5565b91610453565b145f146137625761375b919261372f611483565b50613738611483565b506137416136dd565b506020810151606060408301519201515f1a909192613a37565b9192909190565b5061376c5f6125fe565b9061378061377b60029461149b565b6136c1565b91929190565b634e487b7160e01b5f52602160045260245ffd5b600411156137a457565b613786565b906137b38261379a565b565b6137c16137c691610375565b61184f565b90565b806137dc6137d65f6137a9565b916137a9565b145f146137e7575050565b806137fb6137f560016137a9565b916137a9565b145f1461381e575f63f645eedf60e01b81528061381a60048201610792565b0390fd5b8061383261382c60026137a9565b916137a9565b145f146138605761385c613845836137b5565b5f91829163fce698f760e01b835260048301610e3d565b0390fd5b61387361386d60036137a9565b916137a9565b1461387b5750565b613896905f9182916335e2f38360e21b8352600483016102a5565b0390fd5b5f90565b6138a661389a565b506138b95f6138b36130e0565b01611d11565b90565b90565b803b6138d36138cd5f6116e0565b91610453565b146138f5576138f3905f6138ed6138e8612520565b6138bc565b0161340e565b565b613910905f918291634c9c8ce360e01b835260048301610daf565b0390fd5b346139276139215f6116e0565b91610453565b1161392e57565b5f63b398979f60e01b81528061394660048201610792565b0390fd5b606090565b9061396161395c836105fe565b6105e9565b918252565b3d5f14613981576139763d61394f565b903d5f602084013e5b565b61398961394a565b9061397f565b5f806139bb9361399d61394a565b508390602081019051915af4906139b2613966565b90919091613b33565b90565b90565b6139d56139d06139da926139be565b610340565b610453565b90565b613a12613a1994613a086060949897956139fe608086019a5f870190610298565b6020850190610469565b6040830190610298565b0190610298565b565b613a2f613a2a613a34926116dd565b611746565b610295565b90565b939293613a426127bc565b50613a4b61369e565b50613a54611483565b50613a5e856137b5565b613a90613a8a7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a06139c1565b91610453565b11613b1d5790613ab3602094955f94939293613aaa610202565b948594856139dd565b838052039060015afa15613b1857613acb5f51611746565b80613ae6613ae0613adb5f6125fe565b610a50565b91610a50565b14613afc575f91613af65f613a1b565b91929190565b50613b065f6125fe565b600191613b125f613a1b565b91929190565b613239565b505050613b295f6125fe565b9060039291929190565b90613b4790613b4061394a565b50156112f7565b5f14613b535750613bb7565b613b5c8261149b565b613b6e613b685f6116e0565b91610453565b1480613b9c575b613b7d575090565b613b98905f918291639996b31560e01b835260048301610daf565b0390fd5b50803b613bb1613bab5f6116e0565b91610453565b14613b75565b613bc08161149b565b613bd2613bcc5f6116e0565b91610453565b115f14613be157805190602001fd5b5f63d6bda27560e01b815280613bf960048201610792565b0390fdfea26469706673582212209de8f82d1c014ff899eb02d221cae989f60f6442b6513404c07034c01054027a64736f6c634300081d0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.