Overview
ETH Balance
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 43 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Approve | 13403504 | 68 days ago | IN | 0 ETH | 0.00002809 | ||||
Approve | 11854680 | 131 days ago | IN | 0 ETH | 0.00002273 | ||||
Approve | 11553608 | 142 days ago | IN | 0 ETH | 0.00000497 | ||||
Approve | 10879515 | 167 days ago | IN | 0 ETH | 0.0000095 | ||||
Approve | 10865388 | 167 days ago | IN | 0 ETH | 0.0000117 | ||||
Approve | 10865386 | 167 days ago | IN | 0 ETH | 0.00001178 | ||||
Approve | 10865376 | 167 days ago | IN | 0 ETH | 0.00001059 | ||||
Approve | 10865372 | 167 days ago | IN | 0 ETH | 0.00001202 | ||||
Approve | 9713456 | 205 days ago | IN | 0 ETH | 0.00000322 | ||||
Approve | 9366248 | 217 days ago | IN | 0 ETH | 0.00000215 | ||||
Approve | 9348857 | 218 days ago | IN | 0 ETH | 0.00000412 | ||||
Approve | 9347847 | 218 days ago | IN | 0 ETH | 0.00000243 | ||||
Approve | 9345841 | 218 days ago | IN | 0 ETH | 0.00000416 | ||||
Approve | 9345822 | 218 days ago | IN | 0 ETH | 0.00000372 | ||||
Transfer | 9294327 | 220 days ago | IN | 0 ETH | 0.00000355 | ||||
Transfer | 9213619 | 223 days ago | IN | 0 ETH | 0.00000342 | ||||
Transfer | 9213589 | 223 days ago | IN | 0 ETH | 0.00000814 | ||||
Approve | 9145902 | 225 days ago | IN | 0 ETH | 0.00000444 | ||||
Approve | 9143625 | 225 days ago | IN | 0 ETH | 0.00000407 | ||||
Approve | 9135683 | 225 days ago | IN | 0 ETH | 0.00000371 | ||||
Approve | 9134144 | 225 days ago | IN | 0 ETH | 0.00000447 | ||||
Approve | 9131463 | 226 days ago | IN | 0 ETH | 0.00000231 | ||||
Approve | 9130016 | 226 days ago | IN | 0 ETH | 0.00000183 | ||||
Approve | 9129990 | 226 days ago | IN | 0 ETH | 0.00000269 | ||||
Approve | 9128127 | 226 days ago | IN | 0 ETH | 0.0000021 |
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
9001755 | 230 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
SPumpToken
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.25; import {ERC20} from "solmate/src/tokens/ERC20.sol"; import {SPumpFoundry} from "./SPumpFoundry.sol"; error NotSPumpFoundry(); error Forbidden(); /// @title The SPump protocol ERC20 token template. /// @author strobie <@0xstrobe> /// @notice Until graduation, the token allowance is restricted to only the SPumpFoundry, and transfers to certain external entities are not /// allowed (eg. Uniswap pairs). This makes sure the token is transferable but not tradable before graduation. contract SPumpToken is ERC20 { struct Metadata { SPumpToken token; string name; string symbol; string description; string extended; address creator; bool isGraduated; uint256 mcap; } string public description; string public extended; SPumpFoundry public immutable sPumpFoundry; address public immutable creator; address[] public holders; mapping(address => bool) public isHolder; /// @notice Locked before graduation to restrict trading to SPumpFoundry bool public isUnrestricted = false; constructor( string memory _name, string memory _symbol, uint8 _decimals, uint256 _supply, string memory _description, string memory _extended, address _sPumpFoundry, address _creator ) ERC20(_name, _symbol, _decimals) { description = _description; extended = _extended; sPumpFoundry = SPumpFoundry(_sPumpFoundry); creator = _creator; _mint(msg.sender, _supply); _addHolder(msg.sender); } function _addHolder(address holder) private { if (!isHolder[holder]) { holders.push(holder); isHolder[holder] = true; } } function getMetadata() public view returns (Metadata memory) { SPumpFoundry.Pool memory pool = sPumpFoundry.getPool(this); return Metadata( SPumpToken(address(this)), this.name(), this.symbol(), description, extended, creator, isGraduated(), pool.lastMcapInEth ); } function isGraduated() public view returns (bool) { SPumpFoundry.Pool memory pool = sPumpFoundry.getPool(this); return pool.headmaster != address(0); } function setIsUnrestricted(bool _isUnrestricted) public { if (msg.sender != address(sPumpFoundry)) revert NotSPumpFoundry(); isUnrestricted = _isUnrestricted; } function transfer( address to, uint256 amount ) public override returns (bool) { if (!isUnrestricted) { bool isPregradRestricted = sPumpFoundry .externalEntities_() .isPregradRestricted(address(this), address(to)); if (isPregradRestricted) revert Forbidden(); } _addHolder(to); return super.transfer(to, amount); } function transferFrom( address from, address to, uint256 amount ) public override returns (bool) { if (!isUnrestricted) { bool isPregradRestricted = sPumpFoundry .externalEntities_() .isPregradRestricted(address(this), address(to)); if (isPregradRestricted) revert Forbidden(); } // Pre-approve SPumpFoundry for improved UX if (allowance[from][address(sPumpFoundry)] != type(uint256).max) { allowance[from][address(sPumpFoundry)] = type(uint256).max; } _addHolder(to); return super.transferFrom(from, to, amount); } function approve( address spender, uint256 amount ) public override returns (bool) { if (!isUnrestricted) revert Forbidden(); return super.approve(spender, amount); } function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public override { if (!isUnrestricted) revert Forbidden(); super.permit(owner, spender, value, deadline, v, r, s); } /// Get all addresses who have ever held the token with their balances /// @return The holders and their balances /// @notice Some holders may have a zero balance function getHoldersWithBalance( uint256 offset, uint256 limit ) public view returns (address[] memory, uint256[] memory) { uint256 length = holders.length; if (offset >= length) { return (new address[](0), new uint256[](0)); } uint256 end = offset + limit; if (end > length) { end = length; } address[] memory resultAddresses = new address[](end - offset); uint256[] memory resultBalances = new uint256[](end - offset); for (uint256 i = offset; i < end; i++) { address holder = holders[i]; resultAddresses[i - offset] = holder; resultBalances[i - offset] = balanceOf[holder]; } return (resultAddresses, resultBalances); } /// Get all addresses who have ever held the token /// @return The holders /// @notice Some holders may have a zero balance function getHolders( uint256 offset, uint256 limit ) public view returns (address[] memory) { uint256 length = holders.length; if (offset >= length) { return new address[](0); } uint256 end = offset + limit; if (end > length) { end = length; } address[] memory result = new address[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = holders[i]; } return result; } /// Get the number of all addresses who have ever held the token /// @return The number of holders /// @notice Some holders may have a zero balance function getHoldersLength() public view returns (uint256) { return holders.length; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard struct ReentrancyGuardStorage { uint256 _status; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00; function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) { assembly { $.slot := ReentrancyGuardStorageLocation } } /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); $._status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // On the first call to nonReentrant, _status will be NOT_ENTERED if ($._status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail $._status = ENTERED; } function _nonReentrantAfter() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) $._status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); return $._status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "./IERC20Permit.sol"; import {ERC20} from "../ERC20.sol"; import {ECDSA} from "../../../utils/cryptography/ECDSA.sol"; import {EIP712} from "../../../utils/cryptography/EIP712.sol"; import {Nonces} from "../../../utils/Nonces.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import { ERC20 } from "solmate/src/tokens/ERC20.sol"; import { SPumpFoundry } from "./SPumpFoundry.sol"; // import { IUniswapV2Factory } from "./interfaces/IUniswapV2Factory.sol"; import { ISyncSwapPoolFactory } from "./interfaces/ISyncSwapPoolFactory.sol"; import { SyncSwapClassicPool } from "./SyncSwap/pool/classic/SyncSwapClassicPool.sol"; error Forbidden(); /// @title External entities registry. Primarily used to check and restrict pre-graduation token transfers to specific entities like Uniswap V2 pairs. /// @author strobie <@0xstrobe> /// @notice Refer to the SPumpToken template contract to verify that the restriction is lifted after graduation. contract ExternalEntities { address public immutable weth; ISyncSwapPoolFactory[] public knownFactories; mapping(address => bool) public pregradRestricted; address public owner; constructor(address _owner, address _weth) { owner = _owner; weth = _weth; } function addFactory(address factory) external { if (msg.sender != owner) revert Forbidden(); knownFactories.push(ISyncSwapPoolFactory(payable(factory))); } function removeFactory(address factory) external { if (msg.sender != owner) revert Forbidden(); for (uint256 i = 0; i < knownFactories.length; i++) { if (address(knownFactories[i]) == factory) { knownFactories[i] = knownFactories[knownFactories.length - 1]; knownFactories.pop(); break; } } } function addPregradRestricted(address to) external { if (msg.sender != owner) revert Forbidden(); pregradRestricted[to] = true; } function removePregradRestricted(address to) external { if (msg.sender != owner) revert Forbidden(); pregradRestricted[to] = false; } function computePair(ISyncSwapPoolFactory factory, address tokenA, address tokenB) public view returns (address pair, bool exists) { pair = factory.getPool(tokenA, tokenB); if (pair != address(0)) { return (pair, true); } (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); // both uniswap and quickswap v2 are using the same init code hash pair = address( uint160( uint256( keccak256( abi.encodePacked( hex"ff", factory, keccak256(abi.encodePacked(token0, token1)), hex"4831994a03a6928d76606fac94ca2843f850764d7e96b9245de8ee7bb2c81e97" ) ) ) ) ); return (pair, false); } function isPregradRestricted(address token, address to) external view returns (bool) { for (uint256 i = 0; i < knownFactories.length; i++) { (address pair,) = computePair(knownFactories[i], token, weth); if (pair == to) { return true; } } return pregradRestricted[to]; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; interface ISyncSwapPool { struct TokenAmount { address token; uint amount; } /// @dev Returns the address of pool master. function master() external view returns (address); /// @dev Returns the vault. function vault() external view returns (address); // [Deprecated] This is the interface before the dynamic fees update. /// @dev Returns the pool type. function poolType() external view returns (uint16); /// @dev Returns the assets of the pool. function getAssets() external view returns (address[] memory assets); // [Deprecated] This is the interface before the dynamic fees update. /// @dev Returns the swap fee of the pool. // This function will forward calls to the pool master. // function getSwapFee() external view returns (uint24 swapFee); // [Recommended] This is the latest interface. /// @dev Returns the swap fee of the pool. /// This function will forward calls to the pool master. function getSwapFee( address sender, address tokenIn, address tokenOut, bytes calldata data ) external view returns (uint24 swapFee); /// @dev Returns the protocol fee of the pool. function getProtocolFee() external view returns (uint24 protocolFee); // [Deprecated] The old interface for Era testnet. /// @dev Mints liquidity. // The data for Classic and Stable Pool is as follows. // `address _to = abi.decode(_data, (address));` //function mint(bytes calldata data) external returns (uint liquidity); /// @dev Mints liquidity. function mint( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (uint liquidity); // [Deprecated] The old interface for Era testnet. /// @dev Burns liquidity. // The data for Classic and Stable Pool is as follows. // `(address _to, uint8 _withdrawMode) = abi.decode(_data, (address, uint8));` //function burn(bytes calldata data) external returns (TokenAmount[] memory amounts); /// @dev Burns liquidity. function burn( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount[] memory tokenAmounts); // [Deprecated] The old interface for Era testnet. /// @dev Burns liquidity with single output token. // The data for Classic and Stable Pool is as follows. // `(address _tokenOut, address _to, uint8 _withdrawMode) = abi.decode(_data, (address, address, uint8));` //function burnSingle(bytes calldata data) external returns (uint amountOut); /// @dev Burns liquidity with single output token. function burnSingle( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount memory tokenAmount); // [Deprecated] The old interface for Era testnet. /// @dev Swaps between tokens. // The data for Classic and Stable Pool is as follows. // `(address _tokenIn, address _to, uint8 _withdrawMode) = abi.decode(_data, (address, address, uint8));` //function swap(bytes calldata data) external returns (uint amountOut); /// @dev Swaps between tokens. function swap( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount memory tokenAmount); } // // The base interface, with two tokens and Liquidity Pool (LP) token. // interface IBasePool is ISyncSwapPool, IERC20Permit2 { // function token0() external view returns (address); // function token1() external view returns (address); // function reserve0() external view returns (uint); // function reserve1() external view returns (uint); // function invariantLast() external view returns (uint); // function getReserves() external view returns (uint, uint); // // [Deprecated] The old interface for Era testnet. // //function getAmountOut(address tokenIn, uint amountIn) external view returns (uint amountOut); // //function getAmountIn(address tokenOut, uint amountOut) external view returns (uint amountIn); // function getAmountOut(address tokenIn, uint amountIn, address sender) external view returns (uint amountOut); // function getAmountIn(address tokenOut, uint amountOut, address sender) external view returns (uint amountIn); // event Mint( // address indexed sender, // uint amount0, // uint amount1, // uint liquidity, // address indexed to // ); // event Burn( // address indexed sender, // uint amount0, // uint amount1, // uint liquidity, // address indexed to // ); // event Swap( // address indexed sender, // uint amount0In, // uint amount1In, // uint amount0Out, // uint amount1Out, // address indexed to // ); // event Sync( // uint reserve0, // uint reserve1 // ); // } // // The Classic Pool. // interface IClassicPool is IBasePool { // } // // The Stable Pool with the additional multiplier for pool tokens. // interface IStablePool is IBasePool { // function token0PrecisionMultiplier() external view returns (uint); // function token1PrecisionMultiplier() external view returns (uint); // } // // The interface of callback (optional). // interface ICallback { // struct BaseMintCallbackParams { // address sender; // address to; // uint reserve0; // uint reserve1; // uint balance0; // uint balance1; // uint amount0; // uint amount1; // uint fee0; // uint fee1; // uint newInvariant; // uint oldInvariant; // uint totalSupply; // uint liquidity; // uint24 swapFee; // bytes callbackData; // } // function syncSwapBaseMintCallback(BaseMintCallbackParams calldata params) external; // struct BaseBurnCallbackParams { // address sender; // address to; // uint balance0; // uint balance1; // uint liquidity; // uint totalSupply; // uint amount0; // uint amount1; // uint8 withdrawMode; // bytes callbackData; // } // function syncSwapBaseBurnCallback(BaseBurnCallbackParams calldata params) external; // struct BaseBurnSingleCallbackParams { // address sender; // address to; // address tokenIn; // address tokenOut; // uint balance0; // uint balance1; // uint liquidity; // uint totalSupply; // uint amount0; // uint amount1; // uint amountOut; // uint amountSwapped; // uint feeIn; // uint24 swapFee; // uint8 withdrawMode; // bytes callbackData; // } // function syncSwapBaseBurnSingleCallback(BaseBurnSingleCallbackParams calldata params) external; // struct BaseSwapCallbackParams { // address sender; // address to; // address tokenIn; // address tokenOut; // uint reserve0; // uint reserve1; // uint balance0; // uint balance1; // uint amountIn; // uint amountOut; // uint feeIn; // uint24 swapFee; // uint8 withdrawMode; // bytes callbackData; // } // function syncSwapBaseSwapCallback(BaseSwapCallbackParams calldata params) external; // }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; // The standard interface. interface IPoolFactory { function master() external view returns (address); function getDeployData() external view returns (bytes memory); // Call the function with data to create a pool. // For base pool factories, the data is as follows. // `(address tokenA, address tokenB) = abi.decode(data, (address, address));` function createPool(bytes calldata data) external returns (address pool); } // The interface for base pools has two tokens. interface ISyncSwapPoolFactory is IPoolFactory { event PoolCreated( address indexed token0, address indexed token1, address pool ); function getPool(address tokenA, address tokenB) external view returns (address pool); receive() external payable; // // [Deprecated] This is the interface before the dynamic fees update. // // This function will forward calls to the pool master. // //function getSwapFee(address pool) external view returns (uint24 swapFee); // // [Recommended] This is the latest interface. // // This function will forward calls to the pool master. // function getSwapFee( // address pool, // address sender, // address tokenIn, // address tokenOut, // bytes calldata data // ) external view override returns (uint24 swapFee) { // swapFee = IPoolMaster(master).getSwapFee(pool, sender, tokenIn, tokenOut, data); // } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import { ISyncSwapPool } from "./ISyncSwapPool.sol"; interface ISyncSwapRouter { struct TokenInput { address token; uint amount; } struct SwapStep { address pool; // The pool of the step. bytes data; // The data to execute swap with the pool. address callback; bytes callbackData; } struct SwapPath { SwapStep[] steps; // Steps of the path. address tokenIn; // The input token of the path. uint amountIn; // The input token amount of the path. } struct SplitPermitParams { address token; uint approveAmount; uint deadline; uint8 v; bytes32 r; bytes32 s; } struct ArrayPermitParams { uint approveAmount; uint deadline; bytes signature; } // Returns the vault address. function vault() external view returns (address); // Returns the wETH address. function wETH() external view returns (address); function addLiquidity2( address pool, TokenInput[] calldata inputs, bytes calldata data, uint minLiquidity, address callback, bytes calldata callbackData ) external payable returns (uint liquidity); function addLiquidityWithPermit( address pool, TokenInput[] calldata inputs, bytes calldata data, uint minLiquidity, address callback, bytes calldata callbackData, SplitPermitParams[] memory permits ) external payable returns (uint liquidity); // Burns some liquidity (balanced). function burnLiquidity( address pool, uint liquidity, bytes calldata data, uint[] calldata minAmounts, address callback, bytes calldata callbackData ) external returns (ISyncSwapPool.TokenAmount[] memory amounts); // Burns some liquidity with permit (balanced). function burnLiquidityWithPermit( address pool, uint liquidity, bytes calldata data, uint[] calldata minAmounts, address callback, bytes calldata callbackData, ArrayPermitParams memory permit ) external returns (ISyncSwapPool.TokenAmount[] memory amounts); // Burns some liquidity (single). function burnLiquiditySingle( address pool, uint liquidity, bytes memory data, uint minAmount, address callback, bytes memory callbackData ) external returns (uint amountOut); // Burns some liquidity with permit (single). function burnLiquiditySingleWithPermit( address pool, uint liquidity, bytes memory data, uint minAmount, address callback, bytes memory callbackData, ArrayPermitParams calldata permit ) external returns (uint amountOut); // Performs a swap. function swap( SwapPath[] memory paths, uint amountOutMin, uint deadline ) external payable returns (uint amountOut); function swapWithPermit( SwapPath[] memory paths, uint amountOutMin, uint deadline, SplitPermitParams calldata permit ) external payable returns (uint amountOut); /// @notice Wrapper function to allow pool deployment to be batched. function createPool(address factory, bytes calldata data) external payable returns (address); receive() external payable; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.25; import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol"; import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol"; import {SPumpToken} from "./SPumpToken.sol"; import {SPumpHeadmaster} from "./SPumpHeadmaster.sol"; import {SPumpLedger} from "./SPumpLedger.sol"; import {ExternalEntities} from "./ExternalEntities.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; error InsufficientOutput(); error InsufficientTokenReserve(); error InsufficientEthReserve(); error InsufficientMcap(); error TooMuchMcap(); error AlreadyGraduated(); error NotSPumpToken(); error DeadlineExceeded(); error InvalidAmountIn(); error Forbidden(); error FeeTooHigh(); error Paused(); /// @title The SPump protocol singleton AMM with a custom bonding curve built-in. /// @author strobie <@0xstrobe> /// @notice Owner can pause trading, set fees, and set the graduation strategy, but cannot withdraw funds or modify the bonding curve. contract SPumpFoundry is ReentrancyGuardUpgradeable { using FixedPointMathLib for uint256; struct Pool { SPumpToken token; uint256 tokenReserve; uint256 virtualTokenReserve; uint256 ethReserve; uint256 virtualEthReserve; uint256 lastPrice; uint256 lastMcapInEth; uint256 lastTimestamp; uint256 lastBlock; address creator; address headmaster; // poolId is not limited to address to support non-uniswap styled AMMs uint256 poolId; // K is never updated uint256 K; } uint8 public constant DECIMALS = 18; uint256 public constant FEE_DENOMINATOR = 10000; uint256 public constant MAX_FEE = 1000; // 10% uint256 public feeRate_; uint256 public constant INIT_VIRTUAL_TOKEN_RESERVE = 1073000000 ether; uint256 public constant INIT_REAL_TOKEN_RESERVE = 793100000 ether; uint256 public constant TOTAL_SUPPLY = 1000000000 ether; uint256 public initVirtualEthReserve_; uint256 public graduationThreshold_; uint256 public K_; mapping(SPumpToken => Pool) public pools_; SPumpLedger public sPumpLedger_; uint256 public creationFee_; uint256 public graduationFeeRate_; address public feeTo_; bool public paused_; SPumpHeadmaster public headmaster_; // the contract which implements the graduation logic ExternalEntities public externalEntities_; /*////////////////////////////////////////////////// ///////////// PERMISSIONED METHODS ///////////// //////////////////////////////////////////////////*/ address public owner_; modifier onlyOwner() { if (msg.sender != owner_) revert Forbidden(); _; } function setFeeTo(address feeTo) external onlyOwner { feeTo_ = feeTo; } function setFeeRate(uint256 feeRate) external onlyOwner { if (feeRate > MAX_FEE) revert FeeTooHigh(); feeRate_ = feeRate; } function setGraduationFeeRate(uint256 feeRate) external onlyOwner { if (feeRate > MAX_FEE) revert FeeTooHigh(); graduationFeeRate_ = feeRate; } function setInitVirtualEthReserve( uint256 initVirtualEthReserve ) external onlyOwner { initVirtualEthReserve_ = initVirtualEthReserve; K_ = initVirtualEthReserve_ * INIT_VIRTUAL_TOKEN_RESERVE; graduationThreshold_ = K_ / (INIT_VIRTUAL_TOKEN_RESERVE - INIT_REAL_TOKEN_RESERVE) - initVirtualEthReserve_; } function setCreationFee(uint256 fee) external onlyOwner { creationFee_ = fee; } function setHeadmaster(SPumpHeadmaster headmaster) external onlyOwner { headmaster_ = headmaster; } function setExternalEntities( ExternalEntities externalEntities ) external onlyOwner { externalEntities_ = externalEntities; } function setOwner(address owner) external onlyOwner { owner_ = owner; } function setPaused(bool paused) external onlyOwner { paused_ = paused; } /*////////////////////////////////////////////////// //////////////// CONSTRUCTOR /////////////////// //////////////////////////////////////////////////*/ function initialize(uint256 initVirtualEthReserve) public initializer { feeTo_ = msg.sender; owner_ = msg.sender; paused_ = false; sPumpLedger_ = new SPumpLedger(); initVirtualEthReserve_ = initVirtualEthReserve; K_ = initVirtualEthReserve_ * INIT_VIRTUAL_TOKEN_RESERVE; graduationThreshold_ = K_ / (INIT_VIRTUAL_TOKEN_RESERVE - INIT_REAL_TOKEN_RESERVE) - initVirtualEthReserve_; feeRate_ = 100; // 1% creationFee_ = 0; graduationFeeRate_ = 700; } /*////////////////////////////////////////////////// ////////////////// ASSERTIONS ////////////////// //////////////////////////////////////////////////*/ modifier checkDeadline(uint256 deadline) { if (block.timestamp > deadline) revert DeadlineExceeded(); _; } modifier onlyUnpaused() { if (paused_) revert Paused(); _; } modifier onlyUngraduated(SPumpToken token) { if (pools_[token].headmaster != address(0)) revert AlreadyGraduated(); if (pools_[token].ethReserve > graduationThreshold_) revert TooMuchMcap(); _; } modifier onlySPumpToken(SPumpToken token) { if (token == SPumpToken(address(0)) || pools_[token].token != token) revert NotSPumpToken(); _; } function _isMcapGraduable(SPumpToken token) private view returns (bool) { return pools_[token].ethReserve >= graduationThreshold_; } /*////////////////////////////////////////////////// //////////////////// EVENTS //////////////////// //////////////////////////////////////////////////*/ event TokenCreated(SPumpToken indexed token, address indexed creator); event TokenGraduated( SPumpToken indexed token, SPumpHeadmaster indexed headmaster, uint256 indexed poolId, uint256 liquidity ); event Buy( SPumpToken indexed token, address indexed sender, uint256 amountIn, uint256 amountOut, address indexed to ); event Sell( SPumpToken indexed token, address indexed sender, uint256 amountIn, uint256 amountOut, address indexed to ); event PriceUpdate( SPumpToken indexed token, address indexed sender, uint256 price, uint256 mcapInEth ); /*////////////////////////////////////////////////// //////////////// POOL FUNCTIONS //////////////// //////////////////////////////////////////////////*/ /// @notice Creates a new token in the SPumpFoundry. /// @param name The name of the token. /// @param symbol The symbol of the token. /// @param initAmountIn The initial amount of ETH to swap for the token. /// @param description The description of the token. /// @param extended The extended description of the token, typically a JSON string. /// @return token The newly created token. /// @return amountOut The output amount of token the creator received. function createToken( string memory name, string memory symbol, uint256 initAmountIn, string memory description, string memory extended ) external payable onlyUnpaused returns (SPumpToken token, uint256 amountOut) { if (msg.value != initAmountIn + creationFee_) revert InvalidAmountIn(); if (creationFee_ > 0) { SafeTransferLib.safeTransferETH(feeTo_, creationFee_); } token = _deployToken(name, symbol, description, extended); if (initAmountIn > 0) { amountOut = _swapEthForTokens(token, initAmountIn, 0, msg.sender); } } function _deployToken( string memory name, string memory symbol, string memory description, string memory extended ) private returns (SPumpToken) { SPumpToken token = new SPumpToken( name, symbol, DECIMALS, TOTAL_SUPPLY, description, extended, address(this), msg.sender ); Pool storage pool = pools_[token]; pool.token = token; pool.tokenReserve = INIT_REAL_TOKEN_RESERVE; pool.virtualTokenReserve = INIT_VIRTUAL_TOKEN_RESERVE; pool.ethReserve = 0; pool.virtualEthReserve = initVirtualEthReserve_; pool.lastPrice = initVirtualEthReserve_.divWadDown( INIT_VIRTUAL_TOKEN_RESERVE ); pool.lastMcapInEth = TOTAL_SUPPLY.mulWadUp(pool.lastPrice); pool.lastTimestamp = block.timestamp; pool.lastBlock = block.number; pool.creator = msg.sender; pool.K = K_; emit TokenCreated(token, msg.sender); emit PriceUpdate(token, msg.sender, pool.lastPrice, pool.lastMcapInEth); sPumpLedger_.addCreation(token, msg.sender); return token; } function _graduate(SPumpToken token) private { pools_[token].lastTimestamp = block.timestamp; pools_[token].lastBlock = block.number; uint256 fee = (pools_[token].ethReserve * graduationFeeRate_) / FEE_DENOMINATOR; SafeTransferLib.safeTransferETH(feeTo_, fee); uint256 _amountETH = pools_[token].ethReserve - fee; uint256 _amountToken = TOTAL_SUPPLY - INIT_REAL_TOKEN_RESERVE; SPumpToken(address(token)).setIsUnrestricted(true); token.approve(address(headmaster_), type(uint256).max); (uint256 poolId, uint256 liquidity) = headmaster_.execute{ value: _amountETH }(token, _amountToken, _amountETH); pools_[token].headmaster = address(headmaster_); pools_[token].poolId = poolId; pools_[token].virtualTokenReserve = 0; pools_[token].virtualEthReserve = 0; pools_[token].tokenReserve = 0; pools_[token].ethReserve = 0; emit TokenGraduated(token, headmaster_, poolId, liquidity); sPumpLedger_.addGraduation(token, _amountETH); } /*////////////////////////////////////////////////// //////////////// SWAP FUNCTIONS //////////////// //////////////////////////////////////////////////*/ /// @notice Swaps ETH for tokens. /// @param token The token to swap. /// @param amountIn Input amount of ETH. /// @param amountOutMin Minimum output amount of token. /// @param to Recipient of token. /// @param deadline Deadline for the swap. /// @return amountOut The actual output amount of token. function swapEthForTokens( SPumpToken token, uint256 amountIn, uint256 amountOutMin, address to, uint256 deadline ) external payable nonReentrant onlyUnpaused onlyUngraduated(token) onlySPumpToken(token) checkDeadline(deadline) returns (uint256 amountOut) { if (msg.value != amountIn) revert InvalidAmountIn(); amountOut = _swapEthForTokens(token, amountIn, amountOutMin, to); if (_isMcapGraduable(token)) { _graduate(token); } } function _swapEthForTokens( SPumpToken token, uint256 amountIn, uint256 amountOutMin, address to ) private returns (uint256 amountOut) { if (amountIn == 0) revert InvalidAmountIn(); uint256 fee = (amountIn * feeRate_) / FEE_DENOMINATOR; SafeTransferLib.safeTransferETH(feeTo_, fee); amountIn -= fee; uint256 newVirtualEthReserve = pools_[token].virtualEthReserve + amountIn; uint256 newVirtualTokenReserve = pools_[token].K / newVirtualEthReserve; amountOut = pools_[token].virtualTokenReserve - newVirtualTokenReserve; if (amountOut > pools_[token].tokenReserve) { amountOut = pools_[token].tokenReserve; } if (amountOut < amountOutMin) revert InsufficientOutput(); pools_[token].virtualTokenReserve = newVirtualTokenReserve; pools_[token].virtualEthReserve = newVirtualEthReserve; pools_[token].lastPrice = newVirtualEthReserve.divWadDown( newVirtualTokenReserve ); pools_[token].lastMcapInEth = TOTAL_SUPPLY.mulWadUp( pools_[token].lastPrice ); pools_[token].lastTimestamp = block.timestamp; pools_[token].lastBlock = block.number; pools_[token].ethReserve += amountIn; pools_[token].tokenReserve -= amountOut; SafeTransferLib.safeTransfer(token, to, amountOut); emit Buy(token, msg.sender, amountIn + fee, amountOut, to); emit PriceUpdate( token, msg.sender, pools_[token].lastPrice, pools_[token].lastMcapInEth ); SPumpLedger.Trade memory trade = SPumpLedger.Trade( token, true, msg.sender, amountIn + fee, amountOut, uint128(block.timestamp), uint128(block.number) ); sPumpLedger_.addTrade(trade); } /// @notice Swaps tokens for ETH. /// @param token The token to swap. /// @param amountIn Input amount of token. /// @param amountOutMin Minimum output amount of ETH. /// @param to Recipient of ETH. /// @param deadline Deadline for the swap. /// @return amountOut The actual output amount of ETH. function swapTokensForEth( SPumpToken token, uint256 amountIn, uint256 amountOutMin, address to, uint256 deadline ) external nonReentrant onlyUnpaused onlyUngraduated(token) onlySPumpToken(token) checkDeadline(deadline) returns (uint256 amountOut) { if (amountIn == 0) revert InvalidAmountIn(); SafeTransferLib.safeTransferFrom( token, msg.sender, address(this), amountIn ); uint256 newVirtualTokenReserve = pools_[token].virtualTokenReserve + amountIn; uint256 newVirtualEthReserve = pools_[token].K / newVirtualTokenReserve; amountOut = pools_[token].virtualEthReserve - newVirtualEthReserve; pools_[token].virtualTokenReserve = newVirtualTokenReserve; pools_[token].virtualEthReserve = newVirtualEthReserve; pools_[token].lastPrice = newVirtualEthReserve.divWadDown( newVirtualTokenReserve ); pools_[token].lastMcapInEth = TOTAL_SUPPLY.mulWadUp( pools_[token].lastPrice ); pools_[token].lastTimestamp = block.timestamp; pools_[token].lastBlock = block.number; pools_[token].tokenReserve += amountIn; pools_[token].ethReserve -= amountOut; uint256 fee = (amountOut * feeRate_) / FEE_DENOMINATOR; amountOut -= fee; if (amountOut < amountOutMin) revert InsufficientOutput(); SafeTransferLib.safeTransferETH(feeTo_, fee); SafeTransferLib.safeTransferETH(to, amountOut); emit Sell(token, msg.sender, amountIn, amountOut, to); emit PriceUpdate( token, msg.sender, pools_[token].lastPrice, pools_[token].lastMcapInEth ); SPumpLedger.Trade memory trade = SPumpLedger.Trade( token, false, msg.sender, amountIn, amountOut + fee, uint128(block.timestamp), uint128(block.number) ); sPumpLedger_.addTrade(trade); } /*////////////////////////////////////////////////// //////////////// VIEW FUNCTIONS //////////////// //////////////////////////////////////////////////*/ /// @notice Calculates the expected output amount of ETH given an input amount of token. /// @param token The token to swap. /// @param amountIn Input amount of token. /// @return amountOut The expected output amount of ETH. function calcAmountOutFromToken( SPumpToken token, uint256 amountIn ) external view returns (uint256 amountOut) { if (amountIn == 0) revert InvalidAmountIn(); uint256 newVirtualTokenReserve = pools_[token].virtualTokenReserve + amountIn; uint256 newVirtualEthReserve = pools_[token].K / newVirtualTokenReserve; amountOut = pools_[token].virtualEthReserve - newVirtualEthReserve; uint256 fee = (amountOut * feeRate_) / FEE_DENOMINATOR; amountOut -= fee; } /// @notice Calculates the expected output amount of token given an input amount of ETH. /// @param token The token to swap. /// @param amountIn Input amount of ETH. /// @return amountOut The expected output amount of token. function calcAmountOutFromEth( SPumpToken token, uint256 amountIn ) external view returns (uint256 amountOut) { if (amountIn == 0) revert InvalidAmountIn(); uint256 fee = (amountIn * feeRate_) / FEE_DENOMINATOR; amountIn -= fee; uint256 newVirtualEthReserve = pools_[token].virtualEthReserve + amountIn; uint256 newVirtualTokenReserve = pools_[token].K / newVirtualEthReserve; amountOut = pools_[token].virtualTokenReserve - newVirtualTokenReserve; if (amountOut > pools_[token].tokenReserve) { amountOut = pools_[token].tokenReserve; } } /*/////////////////////////////////////////// // Storage Getters // ///////////////////////////////////////////*/ function getPool(SPumpToken token) external view returns (Pool memory) { return pools_[token]; } function getPoolsAll( uint256 offset, uint256 limit ) external view returns (Pool[] memory) { SPumpToken[] memory tokens = sPumpLedger_.getTokens(offset, limit); Pool[] memory pools = new Pool[](tokens.length); for (uint256 i = 0; i < tokens.length; i++) { pools[i] = pools_[tokens[i]]; } return pools; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.25; import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol"; // import { IUniswapV2Router02 } from "./interfaces/IUniswapV2Router02.sol"; // import { IUniswapV2Factory } from "./interfaces/IUniswapV2Factory.sol"; import {ISyncSwapRouter} from "./interfaces/ISyncSwapRouter.sol"; import {ISyncSwapPoolFactory} from "./interfaces/ISyncSwapPoolFactory.sol"; import {SyncSwapClassicPool} from "./SyncSwap/pool/classic/SyncSwapClassicPool.sol"; import {WrappedEther} from "./SyncSwap/WrappedEther.sol"; import {SPumpToken} from "./SPumpToken.sol"; import {SPumpFoundry} from "./SPumpFoundry.sol"; error Forbidden(); error InvalidAmountToken(); error InvalidAmountEth(); /// @title A SPump protocol graduation strategy for bootstrapping liquidity on uni-v2 AMMs. /// @author strobie <@0xstrobe> /// @notice This contract may be replaced by other strategies in the future. contract SPumpHeadmaster { SPumpFoundry public immutable sPumpFoundry; ISyncSwapRouter public immutable syncSwapRouter; ISyncSwapPoolFactory public immutable syncSwapPoolFactory; address public constant liquidityOwner = address(0); SPumpToken[] public alumni; constructor( SPumpFoundry _sPumpFoundry, ISyncSwapRouter _syncSwapRouter, ISyncSwapPoolFactory _syncSwapPoolFactory ) { sPumpFoundry = _sPumpFoundry; syncSwapRouter = ISyncSwapRouter(payable(_syncSwapRouter)); syncSwapPoolFactory = ISyncSwapPoolFactory( payable(_syncSwapPoolFactory) ); } modifier onlySPumpFoundry() { if (msg.sender != address(sPumpFoundry)) revert Forbidden(); _; } event Executed( SPumpToken token, uint256 indexed poolId, uint256 liquidity, address indexed owner ); function execute( SPumpToken token, uint256 amountToken, uint256 amountEth ) external payable onlySPumpFoundry returns (uint256 poolId, uint256 liquidity) { if (amountToken == 0) revert InvalidAmountToken(); if (amountEth == 0 || msg.value != amountEth) revert InvalidAmountEth(); SafeTransferLib.safeTransferFrom( token, msg.sender, address(this), amountToken ); SafeTransferLib.safeApprove( token, address(syncSwapRouter), amountToken ); address pair = syncSwapPoolFactory.getPool( address(token), syncSwapRouter.wETH() ); if (pair == address(0)) pair = syncSwapRouter.createPool( address(syncSwapPoolFactory), abi.encode(address(token), syncSwapRouter.wETH()) ); // 20 40? poolId = uint256(uint160(pair)); ISyncSwapRouter.TokenInput[] memory inputs = new ISyncSwapRouter.TokenInput[](2); inputs[0] = ISyncSwapRouter.TokenInput(address(token), amountToken); inputs[1] = ISyncSwapRouter.TokenInput(address(0), amountEth); liquidity = syncSwapRouter.addLiquidity2{value: amountEth}( pair, inputs, abi.encode(address(0)), 0, address(0), abi.encode(0) ); alumni.push(token); emit Executed(token, poolId, liquidity, liquidityOwner); } /*/////////////////////////////////////////// // Storage Getters // ///////////////////////////////////////////*/ function getAlumni( uint256 offset, uint256 limit ) external view returns (SPumpToken[] memory) { uint256 length = alumni.length; if (offset >= length) { return new SPumpToken[](0); } uint256 end = offset + limit; if (end > length) { end = length; } SPumpToken[] memory result = new SPumpToken[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = alumni[i]; } return result; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.25; import {SPumpFoundry} from "./SPumpFoundry.sol"; import {SPumpToken} from "./SPumpToken.sol"; error NotFoundry(); /// @title The SPump protocol user activity bookkeeper. /// @author strobie <@0xstrobe> /// @notice Since this version of the protocol is not deployed on gas-expensive networks, this contract is designed to make data more available from onchain. contract SPumpLedger { struct Stats { uint256 totalVolume; uint256 totalLiquidityBootstrapped; uint256 totalTokensCreated; uint256 totalTokensGraduated; uint256 totalTrades; } struct Trade { SPumpToken token; bool isBuy; address maker; uint256 amountIn; uint256 amountOut; uint128 timestamp; uint128 blockNumber; } uint256 public totalVolume; uint256 public totalLiquidityBootstrapped; mapping(address => SPumpToken[]) public tokensCreatedBy; mapping(address => SPumpToken[]) public tokensTradedBy; mapping(SPumpToken => mapping(address => bool)) public hasTraded; SPumpToken[] public tokensCreated; SPumpToken[] public tokensGraduated; mapping(SPumpToken => bool) public isGraduated; Trade[] public trades; mapping(SPumpToken => uint256[]) public tradesByToken; mapping(address => uint256[]) public tradesByUser; SPumpFoundry public immutable sPumpFoundry; constructor() { sPumpFoundry = SPumpFoundry(msg.sender); } modifier onlyFoundry() { if (msg.sender != address(sPumpFoundry)) revert NotFoundry(); _; } /// Add a token to the list of tokens created by a user /// @param token The token to add /// @param user The user to add the token for /// @notice This method should only be called once per token creation function addCreation(SPumpToken token, address user) public onlyFoundry { tokensCreatedBy[user].push(token); tokensCreated.push(token); } /// Add a trade to the ledger /// @param trade The trade to add function addTrade(Trade memory trade) public onlyFoundry { uint256 tradeId = trades.length; trades.push(trade); tradesByToken[trade.token].push(tradeId); tradesByUser[trade.maker].push(tradeId); totalVolume += trade.isBuy ? trade.amountIn : trade.amountOut; if (hasTraded[trade.token][trade.maker]) return; tokensTradedBy[trade.maker].push(trade.token); hasTraded[trade.token][trade.maker] = true; } /// Add a token to the list of graduated tokens /// @param token The token to add /// @notice This method should only be called once per token graduation function addGraduation( SPumpToken token, uint256 amountEth ) public onlyFoundry { tokensGraduated.push(token); isGraduated[token] = true; totalLiquidityBootstrapped += amountEth; } /*/////////////////////////////////////////// // Storage Getters // ///////////////////////////////////////////*/ function getTokensCreatedBy( address user, uint256 offset, uint256 limit ) public view returns (SPumpToken[] memory) { SPumpToken[] storage allTokens = tokensCreatedBy[user]; uint256 length = allTokens.length; if (offset >= length) { return new SPumpToken[](0); } uint256 end = offset + limit; if (end > length) { end = length; } SPumpToken[] memory result = new SPumpToken[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = allTokens[i]; } return result; } function getTokensTradedBy( address user, uint256 offset, uint256 limit ) public view returns (SPumpToken[] memory) { SPumpToken[] storage allTokens = tokensTradedBy[user]; uint256 length = allTokens.length; if (offset >= length) { return new SPumpToken[](0); } uint256 end = offset + limit; if (end > length) { end = length; } SPumpToken[] memory result = new SPumpToken[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = allTokens[i]; } return result; } function getTokens( uint256 offset, uint256 limit ) public view returns (SPumpToken[] memory) { uint256 length = tokensCreated.length; if (offset >= length) { return new SPumpToken[](0); } uint256 end = offset + limit; if (end > length) { end = length; } SPumpToken[] memory result = new SPumpToken[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = tokensCreated[i]; } return result; } function getToken(uint256 tokenId) public view returns (SPumpToken) { return tokensCreated[tokenId]; } function getTokensLength() public view returns (uint256) { return tokensCreated.length; } function getTokensGraduated( uint256 offset, uint256 limit ) public view returns (SPumpToken[] memory) { uint256 length = tokensGraduated.length; if (offset >= length) { return new SPumpToken[](0); } uint256 end = offset + limit; if (end > length) { end = length; } SPumpToken[] memory result = new SPumpToken[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = tokensGraduated[i]; } return result; } function getTokenGraduated( uint256 tokenId ) public view returns (SPumpToken) { return tokensGraduated[tokenId]; } function getTokensGraduatedLength() public view returns (uint256) { return tokensGraduated.length; } function getTradesAll( uint256 offset, uint256 limit ) public view returns (Trade[] memory) { uint256 length = trades.length; if (offset >= length) { return new Trade[](0); } uint256 end = offset + limit; if (end > length) { end = length; } Trade[] memory result = new Trade[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = trades[i]; } return result; } function getTrade(uint256 tradeId) public view returns (Trade memory) { return trades[tradeId]; } function getTradesLength() public view returns (uint256) { return trades.length; } function getTradesByTokenLength( SPumpToken token ) public view returns (uint256) { return tradesByToken[token].length; } function getTradeIdsByToken( SPumpToken token, uint256 offset, uint256 limit ) public view returns (uint256[] memory) { uint256 length = tradesByToken[token].length; if (offset >= length) { return new uint256[](0); } uint256 end = offset + limit; if (end > length) { end = length; } uint256[] memory result = new uint256[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = tradesByToken[token][i]; } return result; } function getTradesByUserLength(address user) public view returns (uint256) { return tradesByUser[user].length; } function getTradeIdsByUser( address user, uint256 offset, uint256 limit ) public view returns (uint256[] memory) { uint256 length = tradesByUser[user].length; if (offset >= length) { return new uint256[](0); } uint256 end = offset + limit; if (end > length) { end = length; } uint256[] memory result = new uint256[](end - offset); for (uint256 i = offset; i < end; i++) { result[i - offset] = tradesByUser[user][i]; } return result; } function getStats() public view returns (Stats memory) { return Stats({ totalVolume: totalVolume, totalLiquidityBootstrapped: totalLiquidityBootstrapped, totalTokensCreated: tokensCreated.length, totalTokensGraduated: tokensGraduated.length, totalTrades: trades.length }); } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IPoolFactory { function master() external view returns (address); function getDeployData() external view returns (bytes memory); function createPool(bytes calldata data) external returns (address pool); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; /// @dev The callback interface for SyncSwap base pool operations. /// Note additional checks will be required for some callbacks, see below for more information. /// Visit the documentation https://syncswap.gitbook.io/api-documentation/ for more details. interface ICallback { struct BaseMintCallbackParams { address sender; address to; uint reserve0; uint reserve1; uint balance0; uint balance1; uint amount0; uint amount1; uint fee0; uint fee1; uint newInvariant; uint oldInvariant; uint totalSupply; uint liquidity; uint24 swapFee; bytes callbackData; } function syncSwapBaseMintCallback(BaseMintCallbackParams calldata params) external; struct BaseBurnCallbackParams { address sender; address to; uint balance0; uint balance1; uint liquidity; uint totalSupply; uint amount0; uint amount1; uint8 withdrawMode; bytes callbackData; } function syncSwapBaseBurnCallback(BaseBurnCallbackParams calldata params) external; struct BaseBurnSingleCallbackParams { address sender; address to; address tokenIn; address tokenOut; uint balance0; uint balance1; uint liquidity; uint totalSupply; uint amount0; uint amount1; uint amountOut; uint amountSwapped; uint feeIn; uint24 swapFee; uint8 withdrawMode; bytes callbackData; } /// @dev Note the `tokenOut` parameter can be decided by the caller, and the correctness is not guaranteed. /// Additional checks MUST be performed in callback to ensure the `tokenOut` is one of the pools tokens if the sender /// is not a trusted source to avoid potential issues. function syncSwapBaseBurnSingleCallback(BaseBurnSingleCallbackParams calldata params) external; struct BaseSwapCallbackParams { address sender; address to; address tokenIn; address tokenOut; uint reserve0; uint reserve1; uint balance0; uint balance1; uint amountIn; uint amountOut; uint feeIn; uint24 swapFee; uint8 withdrawMode; bytes callbackData; } /// @dev Note the `tokenIn` parameter can be decided by the caller, and the correctness is not guaranteed. /// Additional checks MUST be performed in callback to ensure the `tokenIn` is one of the pools tokens if the sender /// is not a trusted source to avoid potential issues. function syncSwapBaseSwapCallback(BaseSwapCallbackParams calldata params) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; /// @notice The manager contract to control fees. /// Management functions are omitted. interface IFeeManager { function getSwapFee( address pool, address sender, address tokenIn, address tokenOut, bytes calldata data) external view returns (uint24); function getProtocolFee(address pool) external view returns (uint24); function getFeeRecipient() external view returns (address); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IFeeRecipient { /// @dev Notifies the fee recipient after sent fees. function notifyFees( uint16 feeType, address token, uint amount, uint feeRate, bytes calldata data ) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IForwarderRegistry { function isForwarder(address forwarder) external view returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IFeeManager.sol"; import "./IForwarderRegistry.sol"; /// @dev The master contract to create pools and manage whitelisted factories. /// Inheriting the fee manager interface to support fee queries. interface IPoolMaster is IFeeManager, IForwarderRegistry { event SetFactoryWhitelisted(address indexed factory, bool whitelisted); event RegisterPool( address indexed factory, address indexed pool, uint16 indexed poolType, bytes data ); event UpdateForwarderRegistry(address indexed newForwarderRegistry); event UpdateFeeManager(address indexed newFeeManager); function vault() external view returns (address); function feeManager() external view returns (address); function pools(uint) external view returns (address); function poolsLength() external view returns (uint); // Forwarder Registry function setForwarderRegistry(address) external; // Fees function setFeeManager(address) external; // Factories function isFactoryWhitelisted(address) external view returns (bool); function setFactoryWhitelisted(address factory, bool whitelisted) external; // Pools function isPool(address) external view returns (bool); function getPool(bytes32) external view returns (address); function createPool(address factory, bytes calldata data) external returns (address pool); function registerPool(address pool, uint16 poolType, bytes calldata data) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IPool.sol"; import "../token/IERC20Permit2.sol"; interface IBasePool is IPool, IERC20Permit2 { function token0() external view returns (address); function token1() external view returns (address); function reserve0() external view returns (uint); function reserve1() external view returns (uint); function invariantLast() external view returns (uint); function getReserves() external view returns (uint, uint); function getAmountOut(address tokenIn, uint amountIn, address sender) external view returns (uint amountOut); function getAmountIn(address tokenOut, uint amountOut, address sender) external view returns (uint amountIn); event Mint( address indexed sender, uint amount0, uint amount1, uint liquidity, address indexed to ); event Burn( address indexed sender, uint amount0, uint amount1, uint liquidity, address indexed to ); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync( uint reserve0, uint reserve1 ); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IBasePool.sol"; interface IClassicPool is IBasePool { }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IPool { struct TokenAmount { address token; uint amount; } /// @dev Returns the address of pool master. function master() external view returns (address); /// @dev Returns the vault. function vault() external view returns (address); /// @dev Returns the pool type. function poolType() external view returns (uint16); /// @dev Returns the assets of the pool. function getAssets() external view returns (address[] memory assets); /// @dev Returns the swap fee of the pool. function getSwapFee(address sender, address tokenIn, address tokenOut, bytes calldata data) external view returns (uint24 swapFee); /// @dev Returns the protocol fee of the pool. function getProtocolFee() external view returns (uint24 protocolFee); /// @dev Mints liquidity. function mint( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (uint liquidity); /// @dev Burns liquidity. function burn( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount[] memory tokenAmounts); /// @dev Burns liquidity with single output token. function burnSingle( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount memory tokenAmount); /// @dev Swaps between tokens. function swap( bytes calldata data, address sender, address callback, bytes calldata callbackData ) external returns (TokenAmount memory tokenAmount); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IERC165 { /// @notice Query if a contract implements an interface /// @param interfaceID The interface identifier, as specified in ERC-165 /// @dev Interface identification is specified in ERC-165. This function /// uses less than 30,000 gas. /// @return `true` if the contract implements `interfaceID` and /// `interfaceID` is not 0xffffffff, `false` otherwise function supportsInterface(bytes4 interfaceID) external view returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IERC20Base.sol"; interface IERC20 is IERC20Base { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IERC20Base { function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint amount) external returns (bool); function transfer(address to, uint amount) external returns (bool); function transferFrom(address from, address to, uint amount) external returns (bool); event Approval(address indexed owner, address indexed spender, uint amount); event Transfer(address indexed from, address indexed to, uint amount); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IERC20.sol"; interface IERC20Permit is IERC20 { function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; function nonces(address owner) external view returns (uint); function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IERC20Permit.sol"; interface IERC20Permit2 is IERC20Permit { function permit2(address owner, address spender, uint amount, uint deadline, bytes calldata signature) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; interface IERC3156FlashBorrower { /** * @dev Receive a flash loan. * @param initiator The initiator of the loan. * @param token The loan currency. * @param amount The amount of tokens lent. * @param fee The additional amount of tokens to repay. * @param data Arbitrary data structure, intended to contain user-defined parameters. * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" */ function onFlashLoan( address initiator, address token, uint256 amount, uint256 fee, bytes calldata data ) external returns (bytes32); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IERC3156FlashBorrower.sol"; interface IERC3156FlashLender { /** * @dev The amount of currency available to be lent. * @param token The loan currency. * @return The amount of `token` that can be borrowed. */ function maxFlashLoan( address token ) external view returns (uint256); /** * @dev The fee to be charged for a given loan. * @param token The loan currency. * @param amount The amount of tokens lent. * @return The amount of `token` to be charged for the loan, on top of the returned principal. */ function flashFee( address token, uint256 amount ) external view returns (uint256); /** * @dev Initiate a flash loan. * @param receiver The receiver of the tokens in the loan, and the receiver of the callback. * @param token The loan currency. * @param amount The amount of tokens lent. * @param data Arbitrary data structure, intended to contain user-defined parameters. */ function flashLoan( IERC3156FlashBorrower receiver, address token, uint256 amount, bytes calldata data ) external returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IFlashLoanRecipient.sol"; import "./IERC3156FlashLender.sol"; interface IFlashLoan is IERC3156FlashLender { function flashLoanFeePercentage() external view returns (uint); /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoanMultiple( IFlashLoanRecipient recipient, address[] memory tokens, uint[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(address indexed recipient, address indexed token, uint amount, uint feeAmount); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.7.0 <0.9.0; // Inspired by Aave Protocol's IFlashLoanReceiver. interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( address[] memory tokens, uint[] memory amounts, uint[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity >=0.5.0; import "./IFlashLoan.sol"; interface IVault is IFlashLoan { function wETH() external view returns (address); function reserves(address token) external view returns (uint reserve); function balanceOf(address token, address owner) external view returns (uint balance); function deposit(address token, address to) external payable returns (uint amount); function depositETH(address to) external payable returns (uint amount); function transferAndDeposit(address token, address to, uint amount) external payable returns (uint); function transfer(address token, address to, uint amount) external; function withdraw(address token, address to, uint amount) external; function withdrawAlternative(address token, address to, uint amount, uint8 mode) external; function withdrawETH(address to, uint amount) external; }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. * * Based on OpenZeppelin's ECDSA library. * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/561d1061fc568f04c7a65853538e834a889751e8/contracts/utils/cryptography/ECDSA.sol */ library ECDSA { /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { // Check the signature length if (signature.length != 65) { return address(0); } // Divide the signature in r, s and v variables bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly // solhint-disable-next-line no-inline-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return address(0); } return ecrecover(hash, v, r, s); } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; import "../interfaces/token/IERC165.sol"; import "../interfaces/token/IERC20Permit2.sol"; import "./SignatureChecker.sol"; error Expired(); error InvalidSignature(); /** * @dev A simple ERC20 implementation for pool's liquidity token, supports permit by both ECDSA signatures from * externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like Argent. * * Based on Solmate's ERC20. * https://github.com/transmissions11/solmate/blob/bff24e835192470ed38bf15dbed6084c2d723ace/src/tokens/ERC20.sol */ contract ERC20Permit2 is IERC165, IERC20Permit2 { uint8 public immutable override decimals = 18; uint public override totalSupply; mapping(address => uint) public override balanceOf; mapping(address => mapping(address => uint)) public override allowance; bytes32 private constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)") mapping(address => uint) public override nonces; // These members are actually immutable as // `_initialize` will only indent to be called once. string public override name; string public override symbol; uint private INITIAL_CHAIN_ID; bytes32 private INITIAL_DOMAIN_SEPARATOR; function _initialize(string memory _name, string memory _symbol) internal { name = _name; symbol = _symbol; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator(); } function supportsInterface(bytes4 interfaceID) external pure override returns (bool) { return interfaceID == this.supportsInterface.selector || // ERC-165 interfaceID == this.permit.selector || // ERC-2612 interfaceID == this.permit2.selector; // Permit2 } function DOMAIN_SEPARATOR() public view override returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : _computeDomainSeparator(); } function _computeDomainSeparator() private view returns (bytes32) { return keccak256( abi.encode( // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)") 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f, keccak256(bytes(name)), // keccak256(bytes("1")) 0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6, block.chainid, address(this) ) ); } function _approve(address _owner, address _spender, uint _amount) private { allowance[_owner][_spender] = _amount; emit Approval(_owner, _spender, _amount); } function approve(address _spender, uint _amount) public override returns (bool) { _approve(msg.sender, _spender, _amount); return true; } function transfer(address _to, uint _amount) public override returns (bool) { balanceOf[msg.sender] -= _amount; // Cannot overflow because the sum of all user balances can't exceed the max uint256 value. unchecked { balanceOf[_to] += _amount; } emit Transfer(msg.sender, _to, _amount); return true; } function transferFrom(address _from, address _to, uint _amount) public override returns (bool) { uint256 _allowed = allowance[_from][msg.sender]; // Saves gas for limited approvals. if (_allowed != type(uint).max) { allowance[_from][msg.sender] = _allowed - _amount; } balanceOf[_from] -= _amount; // Cannot overflow because the sum of all user balances can't exceed the max uint256 value. unchecked { balanceOf[_to] += _amount; } emit Transfer(_from, _to, _amount); return true; } function _mint(address _to, uint _amount) internal { totalSupply += _amount; // Cannot overflow because the sum of all user balances can't exceed the max uint256 value. unchecked { balanceOf[_to] += _amount; } emit Transfer(address(0), _to, _amount); } function _burn(address _from, uint _amount) internal { balanceOf[_from] -= _amount; // Cannot underflow because a user's balance will never be larger than the total supply. unchecked { totalSupply -= _amount; } emit Transfer(_from, address(0), _amount); } modifier ensures(uint _deadline) { // solhint-disable-next-line not-rely-on-time if (block.timestamp > _deadline) { revert Expired(); } _; } function _permitHash( address _owner, address _spender, uint _amount, uint _deadline ) private returns (bytes32) { return keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256(abi.encode(PERMIT_TYPEHASH, _owner, _spender, _amount, nonces[_owner]++, _deadline)) ) ); } function permit( address _owner, address _spender, uint _amount, uint _deadline, uint8 _v, bytes32 _r, bytes32 _s ) public override ensures(_deadline) { bytes32 _hash = _permitHash(_owner, _spender, _amount, _deadline); address _recoveredAddress = ecrecover(_hash, _v, _r, _s); if (_recoveredAddress != _owner) { revert InvalidSignature(); } if (_recoveredAddress == address(0)) { revert InvalidSignature(); } _approve(_owner, _spender, _amount); } function permit2( address _owner, address _spender, uint _amount, uint _deadline, bytes calldata _signature ) public override ensures(_deadline) { bytes32 _hash = _permitHash(_owner, _spender, _amount, _deadline); if (!SignatureChecker.isValidSignatureNow(_owner, _hash, _signature)) { revert InvalidSignature(); } _approve(_owner, _spender, _amount); } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; /// @dev Math functions. /// @dev Modified from Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library Math { /// @notice Compares a and b and returns 'true' if the difference between a and b /// is less than 1 or equal to each other. /// @param a uint256 to compare with. /// @param b uint256 to compare with. function within1(uint256 a, uint256 b) internal pure returns (bool) { unchecked { if (a > b) { return a - b <= 1; } return b - a <= 1; } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. // We check `y >= 2**(k + 8)` but shift right by `k` bits // each branch to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } // Mul Div /// @dev Rounded down. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } /// @dev Rounded down. /// This function assumes that `x` is not zero, and must be checked externally. function mulDivUnsafeFirst( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x * y) / x == y) if iszero(and(iszero(iszero(denominator)), eq(div(z, x), y))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } /// @dev Rounded down. /// This function assumes that `denominator` is not zero, and must be checked externally. function mulDivUnsafeLast( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(x == 0 || (x * y) / x == y) if iszero(or(iszero(x), eq(div(z, x), y))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } /// @dev Rounded down. /// This function assumes that both `x` and `denominator` are not zero, and must be checked externally. function mulDivUnsafeFirstLast( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require((x * y) / x == y) if iszero(eq(div(z, x), y)) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } // Mul /// @dev Optimized safe multiplication operation for minimal gas cost. /// Equivalent to * function mul( uint256 x, uint256 y ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(x == 0 || (x * y) / x == y) if iszero(or(iszero(x), eq(div(z, x), y))) { revert(0, 0) } } } /// @dev Optimized unsafe multiplication operation for minimal gas cost. /// This function assumes that `x` is not zero, and must be checked externally. function mulUnsafeFirst( uint256 x, uint256 y ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require((x * y) / x == y) if iszero(eq(div(z, x), y)) { revert(0, 0) } } } // Div /// @dev Optimized safe division operation for minimal gas cost. /// Equivalent to / function div( uint256 x, uint256 y ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := div(x, y) // Equivalent to require(y != 0) if iszero(y) { revert(0, 0) } } } /// @dev Optimized unsafe division operation for minimal gas cost. /// Division by 0 will not reverts and returns 0, and must be checked externally. function divUnsafeLast( uint256 x, uint256 y ) internal pure returns (uint256 z) { assembly { z := div(x, y) } } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; library MetadataHelper { /** * @dev Returns symbol of the token. * * @param token The address of a ERC20 token. * * Return boolean indicating the status and the symbol as string; * * NOTE: Symbol is not the standard interface and some tokens may not support it. * Calling against these tokens will not success, with an empty result. */ function getSymbol(address token) internal view returns (bool, string memory) { // bytes4(keccak256(bytes("symbol()"))) (bool success, bytes memory returndata) = token.staticcall(abi.encodeWithSelector(0x95d89b41)); if (success) { return (true, abi.decode(returndata, (string))); } else { return (false, ""); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; import "./ECDSA.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Gnosis Safe. * * Based on OpenZeppelin's SignatureChecker library. * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/561d1061fc568f04c7a65853538e834a889751e8/contracts/utils/cryptography/SignatureChecker.sol */ library SignatureChecker { bytes4 constant internal MAGICVALUE = 0x1626ba7e; // bytes4(keccak256("isValidSignature(bytes32,bytes)") /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (address recovered) = ECDSA.recover(hash, signature); if (recovered == signer) { if (recovered != address(0)) { return true; } } (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector(MAGICVALUE, hash, signature) ); return ( success && result.length == 32 && abi.decode(result, (bytes32)) == bytes32(MAGICVALUE) ); } }
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.0; import "../../libraries/Math.sol"; import "../../libraries/ERC20Permit2.sol"; import "../../libraries/MetadataHelper.sol"; import "../../libraries/ReentrancyGuard.sol"; import "../../interfaces/ICallback.sol"; import "../../interfaces/vault/IVault.sol"; import "../../interfaces/pool/IClassicPool.sol"; import "../../interfaces/master/IPoolMaster.sol"; import "../../interfaces/master/IFeeRecipient.sol"; import "../../interfaces/factory/IPoolFactory.sol"; error Overflow(); error InsufficientLiquidityMinted(); contract SyncSwapClassicPool is IClassicPool, ERC20Permit2, ReentrancyGuard { using Math for uint; uint private constant MINIMUM_LIQUIDITY = 1000; uint private constant MAX_FEE = 1e5; /// @dev 100%. /// @dev Pool type `1` for classic pools. // uint16 public constant override poolType = 1; function poolType() external override pure returns (uint16){ return 1; } address public immutable override master; address public immutable override vault; address public immutable override token0; address public immutable override token1; /// @dev Pool reserve of each pool token as of immediately after the most recent balance event. /// The value is used to measure growth in invariant on mints and input tokens on swaps. uint public override reserve0; uint public override reserve1; /// @dev Invariant of the pool as of immediately after the most recent liquidity event. /// The value is used to measure growth in invariant when protocol fee is enabled, /// and will be reset to zero if protocol fee is disabled. uint public override invariantLast; /// @dev Factory must ensures that the parameters are valid. constructor() { (bytes memory _deployData) = IPoolFactory(msg.sender).getDeployData(); (address _token0, address _token1) = abi.decode(_deployData, (address, address)); address _master = IPoolFactory(msg.sender).master(); master = _master; vault = IPoolMaster(_master).vault(); (token0, token1) = (_token0, _token1); // try to set symbols for the LP token (bool _success0, string memory _symbol0) = MetadataHelper.getSymbol(_token0); (bool _success1, string memory _symbol1) = MetadataHelper.getSymbol(_token1); if (_success0 && _success1) { _initialize( string(abi.encodePacked("SyncSwap ", _symbol0, "/", _symbol1, " Classic LP")), string(abi.encodePacked(_symbol0, "/", _symbol1, " cSLP")) ); } else { _initialize( "SyncSwap Classic LP", "cSLP" ); } } function getAssets() external view override returns (address[] memory assets) { assets = new address[](2); assets[0] = token0; assets[1] = token1; } /// @dev Returns the verified sender address otherwise `address(0)`. function _getVerifiedSender(address _sender) private view returns (address) { if (_sender != address(0)) { if (_sender != msg.sender) { if (!IPoolMaster(master).isForwarder(msg.sender)) { // The sender from non-forwarder is invalid. return address(0); } } } return _sender; } /// @dev Mints LP tokens - should be called via the router after transferring pool tokens. /// The router should ensure that sufficient LP tokens are minted. function mint( bytes calldata _data, address _sender, address _callback, bytes calldata _callbackData ) external override nonReentrant returns (uint) { ICallback.BaseMintCallbackParams memory params; params.to = abi.decode(_data, (address)); (params.reserve0, params.reserve1) = (reserve0, reserve1); (params.balance0, params.balance1) = _balances(); params.newInvariant = _computeInvariant(params.balance0, params.balance1); params.amount0 = params.balance0 - params.reserve0; params.amount1 = params.balance1 - params.reserve1; //require(_amount0 != 0 && _amount1 != 0); // Gets swap fee for the sender. _sender = _getVerifiedSender(_sender); uint _amount1Optimal = params.reserve0 == 0 ? 0 : (params.amount0 * params.reserve1) / params.reserve0; bool _swap0For1 = params.amount1 < _amount1Optimal; if (_swap0For1) { params.swapFee = _getSwapFee(_sender, token0, token1); } else { params.swapFee = _getSwapFee(_sender, token1, token0); } // Adds mint fee to reserves (applies to invariant increase) if unbalanced. (params.fee0, params.fee1) = _unbalancedMintFee(params.swapFee, params.amount0, params.amount1, _amount1Optimal, params.reserve0, params.reserve1); params.reserve0 += params.fee0; params.reserve1 += params.fee1; // Calculates old invariant (where unbalanced fee added to) and, mint protocol fee if any. params.oldInvariant = _computeInvariant(params.reserve0, params.reserve1); bool _feeOn; (_feeOn, params.totalSupply) = _mintProtocolFee(0, 0, params.oldInvariant); if (params.totalSupply == 0) { params.liquidity = params.newInvariant - MINIMUM_LIQUIDITY; _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock on first mint. } else { // Calculates liquidity proportional to invariant growth. params.liquidity = ((params.newInvariant - params.oldInvariant) * params.totalSupply) / params.oldInvariant; } // Mints liquidity for recipient. if (params.liquidity == 0) { revert InsufficientLiquidityMinted(); } _mint(params.to, params.liquidity); // Calls callback with data. if (_callback != address(0)) { // Fills additional values for callback params. params.sender = _sender; params.callbackData = _callbackData; ICallback(_callback).syncSwapBaseMintCallback(params); } // Updates reserves and last invariant with new balances. _updateReserves(params.balance0, params.balance1); if (_feeOn) { invariantLast = params.newInvariant; } emit Mint(msg.sender, params.amount0, params.amount1, params.liquidity, params.to); return params.liquidity; } /// @dev Burns LP tokens sent to this contract. /// The router should ensure that sufficient pool tokens are received. function burn( bytes calldata _data, address _sender, address _callback, bytes calldata _callbackData ) external override nonReentrant returns (TokenAmount[] memory _amounts) { ICallback.BaseBurnCallbackParams memory params; (params.to, params.withdrawMode) = abi.decode(_data, (address, uint8)); (params.balance0, params.balance1) = _balances(); params.liquidity = balanceOf[address(this)]; // Mints protocol fee if any. // Note `_mintProtocolFee` here will checks overflow. bool _feeOn; (_feeOn, params.totalSupply) = _mintProtocolFee(params.balance0, params.balance1, 0); // Calculates amounts of pool tokens proportional to balances. params.amount0 = params.liquidity * params.balance0 / params.totalSupply; params.amount1 = params.liquidity * params.balance1 / params.totalSupply; //require(_amount0 != 0 || _amount1 != 0); // Burns liquidity and transfers pool tokens. _burn(address(this), params.liquidity); _transferTokens(token0, params.to, params.amount0, params.withdrawMode); _transferTokens(token1, params.to, params.amount1, params.withdrawMode); // Updates balances. /// @dev Cannot underflow because amounts are lesser figures derived from balances. unchecked { params.balance0 -= params.amount0; params.balance1 -= params.amount1; } // Calls callback with data. // Note reserves are not updated at this point to allow read the old values. if (_callback != address(0)) { // Fills additional values for callback params. params.sender = _getVerifiedSender(_sender); params.callbackData = _callbackData; ICallback(_callback).syncSwapBaseBurnCallback(params); } // Updates reserves and last invariant with up-to-date balances (after transfers). _updateReserves(params.balance0, params.balance1); if (_feeOn) { invariantLast = _computeInvariant(params.balance0, params.balance1); } _amounts = new TokenAmount[](2); _amounts[0] = TokenAmount(token0, params.amount0); _amounts[1] = TokenAmount(token1, params.amount1); emit Burn(msg.sender, params.amount0, params.amount1, params.liquidity, params.to); } /// @dev Burns LP tokens sent to this contract and swaps one of the output tokens for another /// - i.e., the user gets a single token out by burning LP tokens. /// The router should ensure that sufficient pool tokens are received. function burnSingle( bytes calldata _data, address _sender, address _callback, bytes calldata _callbackData ) external override nonReentrant returns (TokenAmount memory _tokenAmount) { ICallback.BaseBurnSingleCallbackParams memory params; (params.tokenOut, params.to, params.withdrawMode) = abi.decode(_data, (address, address, uint8)); (params.balance0, params.balance1) = _balances(); params.liquidity = balanceOf[address(this)]; // Mints protocol fee if any. // Note `_mintProtocolFee` here will checks overflow. bool _feeOn; (_feeOn, params.totalSupply) = _mintProtocolFee(params.balance0, params.balance1, 0); // Calculates amounts of pool tokens proportional to balances. params.amount0 = params.liquidity * params.balance0 / params.totalSupply; params.amount1 = params.liquidity * params.balance1 / params.totalSupply; // Burns liquidity. _burn(address(this), params.liquidity); // Gets swap fee for the sender. _sender = _getVerifiedSender(_sender); // Swaps one token for another, transfers desired tokens, and update context values. /// @dev Calculate `amountOut` as if the user first withdrew balanced liquidity and then swapped from one token for another. if (params.tokenOut == token1) { // Swaps `token0` for `token1`. params.swapFee = _getSwapFee(_sender, token0, token1); params.tokenIn = token0; (params.amountSwapped, params.feeIn) = _getAmountOut( params.swapFee, params.amount0, params.balance0 - params.amount0, params.balance1 - params.amount1, true ); params.amount1 += params.amountSwapped; _transferTokens(token1, params.to, params.amount1, params.withdrawMode); params.amountOut = params.amount1; params.amount0 = 0; params.balance1 -= params.amount1; } else { // Swaps `token1` for `token0`. //require(_tokenOut == token0); params.swapFee = _getSwapFee(_sender, token1, token0); params.tokenIn = token1; (params.amountSwapped, params.feeIn) = _getAmountOut( params.swapFee, params.amount1, params.balance0 - params.amount0, params.balance1 - params.amount1, false ); params.amount0 += params.amountSwapped; _transferTokens(token0, params.to, params.amount0, params.withdrawMode); params.amountOut = params.amount0; params.amount1 = 0; params.balance0 -= params.amount0; } // Calls callback with data. // Note reserves are not updated at this point to allow read the old values. if (_callback != address(0)) { // Fills additional values for callback params. params.sender = _sender; params.callbackData = _callbackData; /// @dev Note the `tokenOut` parameter can be decided by the caller, and the correctness is not guaranteed. /// Additional checks MUST be performed in callback to ensure the `tokenOut` is one of the pools tokens if the sender /// is not a trusted source to avoid potential issues. ICallback(_callback).syncSwapBaseBurnSingleCallback(params); } // Update reserves and last invariant with up-to-date balances (updated above). _updateReserves(params.balance0, params.balance1); if (_feeOn) { invariantLast = _computeInvariant(params.balance0, params.balance1); } _tokenAmount = TokenAmount(params.tokenOut, params.amountOut); emit Burn(msg.sender, params.amount0, params.amount1, params.liquidity, params.to); } /// @dev Swaps one token for another - should be called via the router after transferring input tokens. /// The router should ensure that sufficient output tokens are received. function swap( bytes calldata _data, address _sender, address _callback, bytes calldata _callbackData ) external override nonReentrant returns (TokenAmount memory _tokenAmount) { ICallback.BaseSwapCallbackParams memory params; (params.tokenIn, params.to, params.withdrawMode) = abi.decode(_data, (address, address, uint8)); (params.reserve0, params.reserve1) = (reserve0, reserve1); (params.balance0, params.balance1) = _balances(); // Gets swap fee for the sender. _sender = _getVerifiedSender(_sender); // Calculates output amount, update context values and emit event. if (params.tokenIn == token0) { params.swapFee = _getSwapFee(_sender, token0, token1); params.tokenOut = token1; params.amountIn = params.balance0 - params.reserve0; (params.amountOut, params.feeIn) = _getAmountOut(params.swapFee, params.amountIn, params.reserve0, params.reserve1, true); params.balance1 -= params.amountOut; emit Swap(msg.sender, params.amountIn, 0, 0, params.amountOut, params.to); } else { //require(params.tokenIn == token1); params.swapFee = _getSwapFee(_sender, token1, token0); params.tokenOut = token0; params.amountIn = params.balance1 - params.reserve1; (params.amountOut, params.feeIn) = _getAmountOut(params.swapFee, params.amountIn, params.reserve0, params.reserve1, false); params.balance0 -= params.amountOut; emit Swap(msg.sender, 0, params.amountIn, params.amountOut, 0, params.to); } // Checks overflow. if (params.balance0 > type(uint128).max) { revert Overflow(); } if (params.balance1 > type(uint128).max) { revert Overflow(); } // Transfers output tokens. _transferTokens(params.tokenOut, params.to, params.amountOut, params.withdrawMode); // Calls callback with data. if (_callback != address(0)) { // Fills additional values for callback params. params.sender = _sender; params.callbackData = _callbackData; /// @dev Note the `tokenIn` parameter can be decided by the caller, and the correctness is not guaranteed. /// Additional checks MUST be performed in callback to ensure the `tokenIn` is one of the pools tokens if the sender /// is not a trusted source to avoid potential issues. ICallback(_callback).syncSwapBaseSwapCallback(params); } // Updates reserves with up-to-date balances (updated above). _updateReserves(params.balance0, params.balance1); _tokenAmount.token = params.tokenOut; _tokenAmount.amount = params.amountOut; } function _getSwapFee(address _sender, address _tokenIn, address _tokenOut) private view returns (uint24 _swapFee) { _swapFee = getSwapFee(_sender, _tokenIn, _tokenOut, ""); } /// @dev This function doesn't check the forwarder. function getSwapFee(address _sender, address _tokenIn, address _tokenOut, bytes memory data) public view override returns (uint24 _swapFee) { _swapFee = IPoolMaster(master).getSwapFee(address(this), _sender, _tokenIn, _tokenOut, data); } function getProtocolFee() public view override returns (uint24 _protocolFee) { _protocolFee = IPoolMaster(master).getProtocolFee(address(this)); } function _updateReserves(uint _balance0, uint _balance1) private { (reserve0, reserve1) = (_balance0, _balance1); emit Sync(_balance0, _balance1); } function _transferTokens(address token, address to, uint amount, uint8 withdrawMode) private { if (withdrawMode == 0) { IVault(vault).transfer(token, to, amount); } else { IVault(vault).withdrawAlternative(token, to, amount, withdrawMode); } } function _balances() private view returns (uint balance0, uint balance1) { balance0 = IVault(vault).balanceOf(token0, address(this)); balance1 = IVault(vault).balanceOf(token1, address(this)); } /// @dev This fee is charged to cover for the swap fee when users adding unbalanced liquidity. function _unbalancedMintFee( uint _swapFee, uint _amount0, uint _amount1, uint _amount1Optimal, uint _reserve0, uint _reserve1 ) private pure returns (uint _token0Fee, uint _token1Fee) { if (_reserve0 == 0) { return (0, 0); } if (_amount1 >= _amount1Optimal) { _token1Fee = (_swapFee * (_amount1 - _amount1Optimal)) / (2 * MAX_FEE); } else { uint _amount0Optimal = (_amount1 * _reserve0) / _reserve1; _token0Fee = (_swapFee * (_amount0 - _amount0Optimal)) / (2 * MAX_FEE); } } function _mintProtocolFee(uint _reserve0, uint _reserve1, uint _invariant) private returns (bool _feeOn, uint _totalSupply) { _totalSupply = totalSupply; address _feeRecipient = IPoolMaster(master).getFeeRecipient(); _feeOn = (_feeRecipient != address(0)); uint _invariantLast = invariantLast; if (_invariantLast != 0) { if (_feeOn) { if (_invariant == 0) { _invariant = _computeInvariant(_reserve0, _reserve1); } if (_invariant > _invariantLast) { /// @dev Mints `protocolFee` % of growth in liquidity (invariant). uint _protocolFee = getProtocolFee(); uint _numerator = _totalSupply * (_invariant - _invariantLast) * _protocolFee; uint _denominator = (MAX_FEE - _protocolFee) * _invariant + _protocolFee * _invariantLast; uint _liquidity = _numerator / _denominator; if (_liquidity != 0) { _mint(_feeRecipient, _liquidity); // Notifies the fee recipient. IFeeRecipient(_feeRecipient).notifyFees(1, address(this), _liquidity, _protocolFee, ""); _totalSupply += _liquidity; // update cached value. } } } else { /// @dev Resets last invariant to clear measured growth if protocol fee is not enabled. invariantLast = 0; } } } function getReserves() external view override returns (uint _reserve0, uint _reserve1) { (_reserve0, _reserve1) = (reserve0, reserve1); } function getAmountOut(address _tokenIn, uint _amountIn, address _sender) external view override returns (uint _amountOut) { (uint _reserve0, uint _reserve1) = (reserve0, reserve1); bool _swap0For1 = _tokenIn == token0; address _tokenOut = _swap0For1 ? token1 : token0; (_amountOut,) = _getAmountOut(_getSwapFee(_sender, _tokenIn, _tokenOut), _amountIn, _reserve0, _reserve1, _swap0For1); } function getAmountIn(address _tokenOut, uint _amountOut, address _sender) external view override returns (uint _amountIn) { (uint _reserve0, uint _reserve1) = (reserve0, reserve1); bool _swap1For0 = _tokenOut == token0; address _tokenIn = _swap1For0 ? token1 : token0; _amountIn = _getAmountIn(_getSwapFee(_sender, _tokenIn, _tokenOut), _amountOut, _reserve0, _reserve1, _swap1For0); } function _getAmountOut( uint _swapFee, uint _amountIn, uint _reserve0, uint _reserve1, bool _token0In ) private pure returns (uint _dy, uint _feeIn) { if (_amountIn == 0) { _dy = 0; } else { uint _amountInWithFee = _amountIn * (MAX_FEE - _swapFee); _feeIn = _amountIn * _swapFee / MAX_FEE; if (_token0In) { _dy = (_amountInWithFee * _reserve1) / (_reserve0 * MAX_FEE + _amountInWithFee); } else { _dy = (_amountInWithFee * _reserve0) / (_reserve1 * MAX_FEE + _amountInWithFee); } } } function _getAmountIn( uint _swapFee, uint _amountOut, uint _reserve0, uint _reserve1, bool _token0Out ) private pure returns (uint _dx) { if (_amountOut == 0) { _dx = 0; } else { if (_token0Out) { _dx = (_reserve1 * _amountOut * MAX_FEE) / ((_reserve0 - _amountOut) * (MAX_FEE - _swapFee)) + 1; } else { _dx = (_reserve0 * _amountOut * MAX_FEE) / ((_reserve1 - _amountOut) * (MAX_FEE - _swapFee)) + 1; } } } function _computeInvariant(uint _reserve0, uint _reserve1) private pure returns (uint _invariant) { if (_reserve0 > type(uint128).max) { revert Overflow(); } if (_reserve1 > type(uint128).max) { revert Overflow(); } _invariant = (_reserve0 * _reserve1).sqrt(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol"; // solhint-disable reason-string // solhint-disable no-empty-blocks /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WrappedEther is ERC20Permit { /// @notice Emitted when user deposits Ether to this contract. /// @param dst The address of depositor. /// @param wad The amount of Ether in wei deposited. event Deposit(address indexed dst, uint256 wad); /// @notice Emitted when user withdraws some Ether from this contract. /// @param src The address of caller. /// @param wad The amount of Ether in wei withdrawn. event Withdrawal(address indexed src, uint256 wad); constructor() ERC20Permit("Wrapped Ether") ERC20("Wrapped Ether", "WETH") {} receive() external payable { deposit(); } function deposit() public payable { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 wad) external { _burn(msg.sender, wad); (bool success, ) = msg.sender.call{value: wad}(""); require(success, "withdraw ETH failed"); emit Withdrawal(msg.sender, wad); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant MAX_UINT256 = 2**256 - 1; uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // Divide x * y by the denominator. z := div(mul(x, y), denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // If x * y modulo the denominator is strictly greater than 0, // 1 is added to round up the division of x * y by the denominator. z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Mod x by y. Note this will return // 0 instead of reverting if y is zero. z := mod(x, y) } } function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { // Divide x by y. Note this will return // 0 instead of reverting if y is zero. r := div(x, y) } } function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Add 1 to x * y if x % y > 0. Note this will // return 0 instead of reverting if y is zero. z := add(gt(mod(x, y), 0), div(x, y)) } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } }
{ "optimizer": { "enabled": true, "runs": 200 }, "viaIR": true, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint8","name":"_decimals","type":"uint8"},{"internalType":"uint256","name":"_supply","type":"uint256"},{"internalType":"string","name":"_description","type":"string"},{"internalType":"string","name":"_extended","type":"string"},{"internalType":"address","name":"_sPumpFoundry","type":"address"},{"internalType":"address","name":"_creator","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Forbidden","type":"error"},{"inputs":[],"name":"NotSPumpFoundry","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"extended","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"offset","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"}],"name":"getHolders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getHoldersLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"offset","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"}],"name":"getHoldersWithBalance","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMetadata","outputs":[{"components":[{"internalType":"contract SPumpToken","name":"token","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"extended","type":"string"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"bool","name":"isGraduated","type":"bool"},{"internalType":"uint256","name":"mcap","type":"uint256"}],"internalType":"struct SPumpToken.Metadata","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"holders","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isGraduated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isUnrestricted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sPumpFoundry","outputs":[{"internalType":"contract SPumpFoundry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_isUnrestricted","type":"bool"}],"name":"setIsUnrestricted","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6101206040818152346107c757612294803803809161001e82866107cc565b843982016101009283818303126107c75780516001600160401b0391908281116107c7578361004e9183016107ef565b91602090818301518181116107c757856100699185016107ef565b93868401519360ff851685036107c75760608101519260808201518181116107c757886100979184016107ef565b9760a0830151908282116107c7576100b09184016107ef565b926100c960e06100c260c0860161085e565b940161085e565b938151978389116107b157600098806100e28b54610872565b94601f95868111610765575b508a90868311600114610702578c926106f7575b50508160011b916000199060031b1c19161789555b89518481116105b8578060019b61012e8d54610872565b8681116106a9575b508a90868311600114610640578c92610635575b5050600019600383901b1c1916908b1b178a555b6080524660a052888b5189818b549161017683610872565b928383528c808401968216918260001461061a5750506001146105e0575b6101a0925003826107cc565b5190208b51888101917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528d8201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c08101818110868211176105cc578d5251902060c05260ff19998a600a5416600a558051908482116105b8578190610240600654610872565b858111610569575b5089908583116001146104ff578b926104f4575b5050600019600383901b1c1916908a1b176006555b80519283116104e057908291610288600754610872565b82811161048f575b508791831160011461042e578892610423575b5050600019600383901b1c191690871b176007555b6001600160a01b031660e052875260025481810190811061040f57600255338352600382528583208181540190558551908152827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef833393a33382526009815260ff858320541615610390575b8585516119e791826108ad833960805182610bfa015260a0518261139a015260c051826113c1015260e05182818161014d01528181610571015281816107a40152818161093001528181610cd401528181610dbf015261181f0152518181816109f901526110060152f35b600854680100000000000000008110156103fb57838101806008558110156103e757600883528183200180546001600160a01b03191633908117909155825260099052839020805490921617905538808080610325565b634e487b7160e01b83526032600452602483fd5b634e487b7160e01b83526041600452602483fd5b634e487b7160e01b84526011600452602484fd5b0151905038806102a3565b600789528789208a94509190601f1984168a5b8a8282106104795750508411610460575b505050811b016007556102b8565b015160001960f88460031b161c19169055388080610452565b8385015186558d97909501949384019301610441565b90919250600789528789208380860160051c8201928a87106104d7575b9186958d929594930160051c01915b8281106104c9575050610290565b8b81558695508c91016104bb565b925081926104ac565b634e487b7160e01b88526041600452602488fd5b01519050388061025c565b60068c528a8c208d94509190601f1984168d5b8d82821061054a5750508411610531575b505050811b01600655610271565b015160001960f88460031b161c19169055388080610523565b91929395968291958786015181550195019301908e9594939291610512565b90915060068b52898b208580850160051c8201928c86106105af575b918e91869594930160051c01915b8281106105a1575050610248565b8d81558594508e9101610593565b92508192610585565b634e487b7160e01b8a52604160045260248afd5b634e487b7160e01b8b52604160045260248bfd5b508a8c8e8180528282205b8583106106015750506101a09350820101610194565b8091929450548385880101520191018b908e85936105eb565b60ff191687526101a094151560051b84010191506101949050565b01519050388061014a565b8d8d528b8d208e94509190601f1984168e8e5b8282106106895750508411610670575b505050811b018a5561015e565b015160001960f88460031b161c19169055388080610663565b91929395968291958786015181550195019301908f95949392918e610653565b9091508c8c528a8c208680850160051c8201928d86106106ee575b918f91869594930160051c01915b8281106106e0575050610136565b8e81558594508f91016106d2565b925081926106c4565b015190503880610102565b8c80528b8d209250601f1984168d5b8d82821061074f575050908460019594939210610736575b505050811b018955610117565b015160001960f88460031b161c19169055388080610729565b6001859682939686015181550195019301610711565b9091508b80528a8c208680850160051c8201928d86106107a8575b9085949392910160051c01905b81811061079a57506100ee565b8d815584935060010161078d565b92508192610780565b634e487b7160e01b600052604160045260246000fd5b600080fd5b601f909101601f19168101906001600160401b038211908210176107b157604052565b919080601f840112156107c75782516001600160401b0381116107b1576020906040519261082683601f19601f85011601856107cc565b8184528282870101116107c75760005b81811061084b57508260009394955001015290565b8581018301518482018401528201610836565b51906001600160a01b03821682036107c757565b90600182811c921680156108a2575b602083101461088c57565b634e487b7160e01b600052602260045260246000fd5b91607f169161088156fe608060408181526004918236101561001657600080fd5b60009260e08435811c92836302d05d3f14610ff25750826306fdde0314610f41578263095ea7b314610eb657826318160ddd14610e9657826323b872dd14610c605782632a11ced014610c1e578263313ce56714610bdf5782633644e51514610bba5782636f3921ee14610b9b57826370a0823114610b625782637284e41614610b305782637a5b4f59146108c15782637ecebe00146108885782638911e26b146108635782638e846972146107f657826395c996411461078157826395d89b41146106965782639e5f26021461066f578263a9059cbb146104b8578263b569807114610483578263d4d7b19a14610444578263d505accf146101ec57508163db04aef4146101cd578163dd62ed3e14610180575063fffdf0341461013a57600080fd5b3461017c578160031936011261017c57517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b5080fd5b9050346101c957816003193601126101c957602092829161019f61128d565b6101a76112a8565b6001600160a01b03918216845291865283832091168252845220549051908152f35b8280fd5b50503461017c578160031936011261017c576020906008549051908152f35b849084346101c957816003193601126101c95761020761128d565b61020f6112a8565b9160443590606435926084359460ff86168096036104405760ff600a541615610430574285106103ed57610241611395565b9460018060a01b0380931696878a5260209660058852858b20998a549a60018c019055865193868a8601967f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988528c8a880152169b8c606087015289608087015260a086015260c085015260c08452830167ffffffffffffffff94848210868311176103d9578188528451902061010085019261190160f01b845261010286015261012285015260428152610160840194818610908611176103c657848752519020835261018082015260a4356101a082015260c4356101c0909101528780528490889060809060015afa156103bc5786511696871515806103b3575b156103815786977f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259596975283528087208688528352818188205551908152a380f35b83606492519162461bcd60e51b8352820152600e60248201526d24a72b20a624a22fa9a4a3a722a960911b6044820152fd5b5084881461033e565b81513d88823e3d90fd5b634e487b7160e01b8c5260418d5260248cfd5b50634e487b7160e01b8c5260418d5260248cfd5b825162461bcd60e51b81526020818b0152601760248201527f5045524d49545f444541444c494e455f455850495245440000000000000000006044820152606490fd5b8251631dd2188d60e31b81528990fd5b8780fd5b5050503461017c57602036600319011261017c5760209160ff9082906001600160a01b0361047061128d565b1681526009855220541690519015158152f35b5050503461017c576104b4906104a161049b3661130b565b90611888565b9051918291602083526020830190611321565b0390f35b5082843461066c578160031936011261066c576104d361128d565b926024359060ff600a541615610554575b5082846104f260209661191d565b338452600386528184206105078482546116f5565b90556001600160a01b0316808452600386529220805482019055825190815233907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef908590a35160018152f35b8351631500a3df60e21b81526020906001600160a01b03828285817f000000000000000000000000000000000000000000000000000000000000000085165afa918215610662579083918793610633575b50875163eb56a3bd60e01b8152308682019081526001600160a01b038b1660208201529093849291839003604001918391165afa9182156106295785926105fc575b5050156104e4578351631dd2188d60e31b8152fd5b61061b9250803d10610622575b61061381836110be565b81019061137d565b86806105e7565b503d610609565b86513d87823e3d90fd5b610654919350823d841161065b575b61064c81836110be565b81019061135e565b91896105a5565b503d610642565b87513d88823e3d90fd5b80fd5b5050503461017c578160031936011261017c5760209061068d6117f8565b90519015158152f35b83853461066c578060031936011261066c578151918282600193600154946106bd86611035565b918285526020968760018216918260001461075a5750506001146106fe575b5050506104b492916106ef9103856110be565b51928284938452830190611268565b9190869350600183527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b82841061074257505050820101816106ef6104b46106dc565b8054848a018601528895508794909301928101610729565b60ff19168782015293151560051b860190930193508492506106ef91506104b490506106dc565b509050346101c95760203660031901126101c9578035918215158093036107f2577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036107e557505060ff8019600a5416911617600a5580f35b516307d0dbc760e11b8152fd5b8380fd5b83853461066c579061081061080a3661130b565b90611716565b90926108258351948486958652850190611321565b60208482036020860152602080855193848152019401925b82811061084c57505050500390f35b83518552869550938101939281019260010161083d565b5050503461017c578160031936011261017c5760209060ff600a541690519015158152f35b5050503461017c57602036600319011261017c5760209181906001600160a01b036108b161128d565b1681526005845220549051908152f35b848285346101c957826003193601126101c95780516108df8161106f565b8381528385606092836020820152838582015283808201528360808201528260a08201528260c0820152015260018060a01b0394825163bbe4f6db60e01b815230858201526101a09081816024818b7f0000000000000000000000000000000000000000000000000000000000000000165afa918215610af9578792610b03575b505083516306fdde0360e01b81529486868281305afa958615610af9578796610add575b5086855180926395d89b4160e01b825281305afa968715610ad2578097610aad575b5050866109b16117f8565b9160c00151938551976109c38961106f565b308952602089019788528689019081526109db6111a6565b828a019081526109e96110e0565b9160808b0192835260a08b0199857f0000000000000000000000000000000000000000000000000000000000000000168b5260c08c019615158752878c0198895289519c8d9c60208e52511660208d015251610100809a8d01526101208c01610a5191611268565b905190601f1994858d830301908d0152610a6a91611268565b905190838b82030160808c0152610a8091611268565b9051918982030160a08a0152610a9591611268565b95511660c08701525115159085015251908301520390f35b610aca9297503d8091833e610ac281836110be565b81019061161c565b9487806109a6565b8551903d90823e3d90fd5b610af29196503d8089833e610ac281836110be565b9488610984565b85513d89823e3d90fd5b610b229250803d10610b29575b610b1a81836110be565b810190611550565b8780610960565b503d610b10565b5050503461017c578160031936011261017c576104b490610b4f6111a6565b9051918291602083526020830190611268565b5050503461017c57602036600319011261017c5760209181906001600160a01b03610b8b61128d565b1681526003845220549051908152f35b5050503461017c578160031936011261017c576104b490610b4f6110e0565b5050503461017c578160031936011261017c57602090610bd8611395565b9051908152f35b5050503461017c578160031936011261017c576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b509050346101c95760203660031901126101c957359160085483101561066c5750610c4a6020926112be565b905491519160018060a01b039160031b1c168152f35b5082843461066c57606036600319011261066c57610c7c61128d565b610c846112a8565b9360443560ff600a541615610da1575b907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef918560018060a01b0380951694858752602098848a958652838920837f00000000000000000000000000000000000000000000000000000000000000001690818b5287526000199081868c205403610d88575b50610d138361191d565b888a52818752848a20338b52875285858b2054918203610d65575b50505086885260038552828820610d468582546116f5565b9055169586815260038452208181540190558551908152a35160018152f35b610d6e916116f5565b90888a528652838920338a528652838920558a8085610d2e565b898b52828852858b20908b52875280858b20558c610d09565b8451631500a3df60e21b81526020906001600160a01b0390828186817f000000000000000000000000000000000000000000000000000000000000000086165afa908115610e8c578391610e29918991610e6f575b50895163eb56a3bd60e01b8152308882019081526001600160a01b038d1660208201529094859384928391604090910190565b0392165afa918215610662578692610e52575b505015610c9457508351631dd2188d60e31b8152fd5b610e689250803d106106225761061381836110be565b8780610e3c565b610e869150833d851161065b5761064c81836110be565b8b610df6565b88513d89823e3d90fd5b5050503461017c578160031936011261017c576020906002549051908152f35b5082843461066c578160031936011261066c57610ed161128d565b906024359060ff600a541615610f315783829160209633825287528181209460018060a01b0316948582528752205582519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925843392a35160018152f35b50505051631dd2188d60e31b8152fd5b83853461066c578060031936011261066c5781519182828354610f6381611035565b908184526020956001918760018216918260001461075a575050600114610f97575050506104b492916106ef9103856110be565b91908693508280527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b828410610fda57505050820101816106ef6104b46106dc565b8054848a018601528895508794909301928101610fc1565b85903461017c578160031936011261017c577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90600182811c92168015611065575b602083101461104f57565b634e487b7160e01b600052602260045260246000fd5b91607f1691611044565b610100810190811067ffffffffffffffff82111761108c57604052565b634e487b7160e01b600052604160045260246000fd5b6020810190811067ffffffffffffffff82111761108c57604052565b90601f8019910116810190811067ffffffffffffffff82111761108c57604052565b60405190600082600754916110f483611035565b808352926020906001908181169081156111825750600114611121575b505061111f925003836110be565b565b91509260076000527fa66cc928b5edb82af9bd49922954155ab7b0942694bea4ce44661d9a8736c688936000925b82841061116a575061111f9450505081016020013880611111565b8554888501830152948501948794509281019261114f565b9150506020925061111f94915060ff191682840152151560051b8201013880611111565b60405190600082600654916111ba83611035565b8083529260209060019081811690811561118257506001146111e457505061111f925003836110be565b91509260066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000925b82841061122d575061111f9450505081016020013880611111565b85548885018301529485019487945092810192611212565b60005b8381106112585750506000910152565b8181015183820152602001611248565b9060209161128181518092818552858086019101611245565b601f01601f1916010190565b600435906001600160a01b03821682036112a357565b600080fd5b602435906001600160a01b03821682036112a357565b6008548110156112f55760086000527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30190600090565b634e487b7160e01b600052603260045260246000fd5b60409060031901126112a3576004359060243590565b90815180825260208080930193019160005b828110611341575050505090565b83516001600160a01b031685529381019392810192600101611333565b908160209103126112a357516001600160a01b03811681036112a35790565b908160209103126112a3575180151581036112a35790565b6000467f0000000000000000000000000000000000000000000000000000000000000000036113e357507f000000000000000000000000000000000000000000000000000000000000000090565b604051815482916113f382611035565b80825281602094858201946001908760018216918260001461151e5750506001146114c5575b50611426925003826110be565b51902091604051918201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f845260408301527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608301524660808301523060a083015260a0825260c082019082821067ffffffffffffffff8311176114b1575060405251902090565b634e487b7160e01b81526041600452602490fd5b87805286915087907f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b858310611506575050611426935082010138611419565b805483880185015286945088939092019181016114ef565b60ff1916885261142695151560051b85010192503891506114199050565b51906001600160a01b03821682036112a357565b80916101a092839103126112a35760405191820182811067ffffffffffffffff82111761108c5760405280516001600160a01b03811681036112a35782526020810151602083015260408101516040830152606081015160608301526080810151608083015260a081015160a083015260c081015160c083015260e081015160e083015261010080820151908301526101206115ed81830161153c565b908301526101406115ff81830161153c565b908301526101608082015190830152610180809101519082015290565b6020818303126112a357805167ffffffffffffffff918282116112a357019082601f830112156112a357815190811161108c5760405192611667601f8301601f1916602001856110be565b818452602082840101116112a3576116859160208085019101611245565b90565b67ffffffffffffffff811161108c5760051b60200190565b906116aa82611688565b6116b760405191826110be565b82815280926116c8601f1991611688565b0190602036910137565b919082018092116116df57565b634e487b7160e01b600052601160045260246000fd5b919082039182116116df57565b80518210156112f55760209160051b010190565b919060085490818410156117ca5761172e90846116d2565b908082116117c2575b5061174a61174584836116f5565b6116a0565b9061175861174585836116f5565b93805b828110611769575050509190565b8060406117776001936112be565b905490600391858060a01b0391831b1c16908161179d61179788876116f5565b8a611702565b52600091825260205220546117bb6117b585846116f5565b89611702565b520161175b565b905038611737565b505060405191506117da826110a2565b60008252604051916117eb836110a2565b6000835260003681379190565b60405163bbe4f6db60e01b81523060048201526001600160a01b03906101a09081816024817f000000000000000000000000000000000000000000000000000000000000000087165afa90811561187c576101409260009261185f575b5050015116151590565b6118759250803d10610b2957610b1a81836110be565b3880611855565b6040513d6000823e3d90fd5b9060085490818310156119025761189f90836116d2565b908082116118fa575b506118b661174583836116f5565b91805b8281106118c65750505090565b806118d26001926112be565b838060a01b0391549060031b1c166118f36118ed85846116f5565b87611702565b52016118b9565b9050386118a8565b505050604051611911816110a2565b60008152600036813790565b9060018060a01b03809216600090808252600960205260ff60408320541615611947575b50509050565b600854936801000000000000000085101561199d5761196f85600160409697016008556112be565b819291549060031b9184831b921b19161790558152600960205220600160ff19825416179055803880611941565b634e487b7160e01b83526041600452602483fdfea264697066735822122026a7310de205104595122e97d70d81568ebefa0aecacc5a90075af269f8c16de64736f6c634300081900330000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c000000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe456000000000000000000000000bc5cfb0ded4b7779cff1da8b08ad5bbfa6500058000000000000000000000000000000000000000000000000000000000000000a5363726f6c6c20436174000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004534341540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000124a75737420436174206f6e205363726f6c6c000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000125363726f6c6c2050756d70206c61756e63680000000000000000000000000000
Deployed Bytecode
0x608060408181526004918236101561001657600080fd5b60009260e08435811c92836302d05d3f14610ff25750826306fdde0314610f41578263095ea7b314610eb657826318160ddd14610e9657826323b872dd14610c605782632a11ced014610c1e578263313ce56714610bdf5782633644e51514610bba5782636f3921ee14610b9b57826370a0823114610b625782637284e41614610b305782637a5b4f59146108c15782637ecebe00146108885782638911e26b146108635782638e846972146107f657826395c996411461078157826395d89b41146106965782639e5f26021461066f578263a9059cbb146104b8578263b569807114610483578263d4d7b19a14610444578263d505accf146101ec57508163db04aef4146101cd578163dd62ed3e14610180575063fffdf0341461013a57600080fd5b3461017c578160031936011261017c57517f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe4566001600160a01b03168152602090f35b5080fd5b9050346101c957816003193601126101c957602092829161019f61128d565b6101a76112a8565b6001600160a01b03918216845291865283832091168252845220549051908152f35b8280fd5b50503461017c578160031936011261017c576020906008549051908152f35b849084346101c957816003193601126101c95761020761128d565b61020f6112a8565b9160443590606435926084359460ff86168096036104405760ff600a541615610430574285106103ed57610241611395565b9460018060a01b0380931696878a5260209660058852858b20998a549a60018c019055865193868a8601967f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988528c8a880152169b8c606087015289608087015260a086015260c085015260c08452830167ffffffffffffffff94848210868311176103d9578188528451902061010085019261190160f01b845261010286015261012285015260428152610160840194818610908611176103c657848752519020835261018082015260a4356101a082015260c4356101c0909101528780528490889060809060015afa156103bc5786511696871515806103b3575b156103815786977f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259596975283528087208688528352818188205551908152a380f35b83606492519162461bcd60e51b8352820152600e60248201526d24a72b20a624a22fa9a4a3a722a960911b6044820152fd5b5084881461033e565b81513d88823e3d90fd5b634e487b7160e01b8c5260418d5260248cfd5b50634e487b7160e01b8c5260418d5260248cfd5b825162461bcd60e51b81526020818b0152601760248201527f5045524d49545f444541444c494e455f455850495245440000000000000000006044820152606490fd5b8251631dd2188d60e31b81528990fd5b8780fd5b5050503461017c57602036600319011261017c5760209160ff9082906001600160a01b0361047061128d565b1681526009855220541690519015158152f35b5050503461017c576104b4906104a161049b3661130b565b90611888565b9051918291602083526020830190611321565b0390f35b5082843461066c578160031936011261066c576104d361128d565b926024359060ff600a541615610554575b5082846104f260209661191d565b338452600386528184206105078482546116f5565b90556001600160a01b0316808452600386529220805482019055825190815233907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef908590a35160018152f35b8351631500a3df60e21b81526020906001600160a01b03828285817f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe45685165afa918215610662579083918793610633575b50875163eb56a3bd60e01b8152308682019081526001600160a01b038b1660208201529093849291839003604001918391165afa9182156106295785926105fc575b5050156104e4578351631dd2188d60e31b8152fd5b61061b9250803d10610622575b61061381836110be565b81019061137d565b86806105e7565b503d610609565b86513d87823e3d90fd5b610654919350823d841161065b575b61064c81836110be565b81019061135e565b91896105a5565b503d610642565b87513d88823e3d90fd5b80fd5b5050503461017c578160031936011261017c5760209061068d6117f8565b90519015158152f35b83853461066c578060031936011261066c578151918282600193600154946106bd86611035565b918285526020968760018216918260001461075a5750506001146106fe575b5050506104b492916106ef9103856110be565b51928284938452830190611268565b9190869350600183527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b82841061074257505050820101816106ef6104b46106dc565b8054848a018601528895508794909301928101610729565b60ff19168782015293151560051b860190930193508492506106ef91506104b490506106dc565b509050346101c95760203660031901126101c9578035918215158093036107f2577f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe4566001600160a01b031633036107e557505060ff8019600a5416911617600a5580f35b516307d0dbc760e11b8152fd5b8380fd5b83853461066c579061081061080a3661130b565b90611716565b90926108258351948486958652850190611321565b60208482036020860152602080855193848152019401925b82811061084c57505050500390f35b83518552869550938101939281019260010161083d565b5050503461017c578160031936011261017c5760209060ff600a541690519015158152f35b5050503461017c57602036600319011261017c5760209181906001600160a01b036108b161128d565b1681526005845220549051908152f35b848285346101c957826003193601126101c95780516108df8161106f565b8381528385606092836020820152838582015283808201528360808201528260a08201528260c0820152015260018060a01b0394825163bbe4f6db60e01b815230858201526101a09081816024818b7f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe456165afa918215610af9578792610b03575b505083516306fdde0360e01b81529486868281305afa958615610af9578796610add575b5086855180926395d89b4160e01b825281305afa968715610ad2578097610aad575b5050866109b16117f8565b9160c00151938551976109c38961106f565b308952602089019788528689019081526109db6111a6565b828a019081526109e96110e0565b9160808b0192835260a08b0199857f000000000000000000000000bc5cfb0ded4b7779cff1da8b08ad5bbfa6500058168b5260c08c019615158752878c0198895289519c8d9c60208e52511660208d015251610100809a8d01526101208c01610a5191611268565b905190601f1994858d830301908d0152610a6a91611268565b905190838b82030160808c0152610a8091611268565b9051918982030160a08a0152610a9591611268565b95511660c08701525115159085015251908301520390f35b610aca9297503d8091833e610ac281836110be565b81019061161c565b9487806109a6565b8551903d90823e3d90fd5b610af29196503d8089833e610ac281836110be565b9488610984565b85513d89823e3d90fd5b610b229250803d10610b29575b610b1a81836110be565b810190611550565b8780610960565b503d610b10565b5050503461017c578160031936011261017c576104b490610b4f6111a6565b9051918291602083526020830190611268565b5050503461017c57602036600319011261017c5760209181906001600160a01b03610b8b61128d565b1681526003845220549051908152f35b5050503461017c578160031936011261017c576104b490610b4f6110e0565b5050503461017c578160031936011261017c57602090610bd8611395565b9051908152f35b5050503461017c578160031936011261017c576020905160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b509050346101c95760203660031901126101c957359160085483101561066c5750610c4a6020926112be565b905491519160018060a01b039160031b1c168152f35b5082843461066c57606036600319011261066c57610c7c61128d565b610c846112a8565b9360443560ff600a541615610da1575b907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef918560018060a01b0380951694858752602098848a958652838920837f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe4561690818b5287526000199081868c205403610d88575b50610d138361191d565b888a52818752848a20338b52875285858b2054918203610d65575b50505086885260038552828820610d468582546116f5565b9055169586815260038452208181540190558551908152a35160018152f35b610d6e916116f5565b90888a528652838920338a528652838920558a8085610d2e565b898b52828852858b20908b52875280858b20558c610d09565b8451631500a3df60e21b81526020906001600160a01b0390828186817f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe45686165afa908115610e8c578391610e29918991610e6f575b50895163eb56a3bd60e01b8152308882019081526001600160a01b038d1660208201529094859384928391604090910190565b0392165afa918215610662578692610e52575b505015610c9457508351631dd2188d60e31b8152fd5b610e689250803d106106225761061381836110be565b8780610e3c565b610e869150833d851161065b5761064c81836110be565b8b610df6565b88513d89823e3d90fd5b5050503461017c578160031936011261017c576020906002549051908152f35b5082843461066c578160031936011261066c57610ed161128d565b906024359060ff600a541615610f315783829160209633825287528181209460018060a01b0316948582528752205582519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925843392a35160018152f35b50505051631dd2188d60e31b8152fd5b83853461066c578060031936011261066c5781519182828354610f6381611035565b908184526020956001918760018216918260001461075a575050600114610f97575050506104b492916106ef9103856110be565b91908693508280527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b828410610fda57505050820101816106ef6104b46106dc565b8054848a018601528895508794909301928101610fc1565b85903461017c578160031936011261017c577f000000000000000000000000bc5cfb0ded4b7779cff1da8b08ad5bbfa65000586001600160a01b03168152602090f35b90600182811c92168015611065575b602083101461104f57565b634e487b7160e01b600052602260045260246000fd5b91607f1691611044565b610100810190811067ffffffffffffffff82111761108c57604052565b634e487b7160e01b600052604160045260246000fd5b6020810190811067ffffffffffffffff82111761108c57604052565b90601f8019910116810190811067ffffffffffffffff82111761108c57604052565b60405190600082600754916110f483611035565b808352926020906001908181169081156111825750600114611121575b505061111f925003836110be565b565b91509260076000527fa66cc928b5edb82af9bd49922954155ab7b0942694bea4ce44661d9a8736c688936000925b82841061116a575061111f9450505081016020013880611111565b8554888501830152948501948794509281019261114f565b9150506020925061111f94915060ff191682840152151560051b8201013880611111565b60405190600082600654916111ba83611035565b8083529260209060019081811690811561118257506001146111e457505061111f925003836110be565b91509260066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000925b82841061122d575061111f9450505081016020013880611111565b85548885018301529485019487945092810192611212565b60005b8381106112585750506000910152565b8181015183820152602001611248565b9060209161128181518092818552858086019101611245565b601f01601f1916010190565b600435906001600160a01b03821682036112a357565b600080fd5b602435906001600160a01b03821682036112a357565b6008548110156112f55760086000527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30190600090565b634e487b7160e01b600052603260045260246000fd5b60409060031901126112a3576004359060243590565b90815180825260208080930193019160005b828110611341575050505090565b83516001600160a01b031685529381019392810192600101611333565b908160209103126112a357516001600160a01b03811681036112a35790565b908160209103126112a3575180151581036112a35790565b6000467f0000000000000000000000000000000000000000000000000000000000082750036113e357507f701da288fffba574a4445cb5eca865d72ac3c8c3871099b2263e8a05097a3bcb90565b604051815482916113f382611035565b80825281602094858201946001908760018216918260001461151e5750506001146114c5575b50611426925003826110be565b51902091604051918201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f845260408301527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608301524660808301523060a083015260a0825260c082019082821067ffffffffffffffff8311176114b1575060405251902090565b634e487b7160e01b81526041600452602490fd5b87805286915087907f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b858310611506575050611426935082010138611419565b805483880185015286945088939092019181016114ef565b60ff1916885261142695151560051b85010192503891506114199050565b51906001600160a01b03821682036112a357565b80916101a092839103126112a35760405191820182811067ffffffffffffffff82111761108c5760405280516001600160a01b03811681036112a35782526020810151602083015260408101516040830152606081015160608301526080810151608083015260a081015160a083015260c081015160c083015260e081015160e083015261010080820151908301526101206115ed81830161153c565b908301526101406115ff81830161153c565b908301526101608082015190830152610180809101519082015290565b6020818303126112a357805167ffffffffffffffff918282116112a357019082601f830112156112a357815190811161108c5760405192611667601f8301601f1916602001856110be565b818452602082840101116112a3576116859160208085019101611245565b90565b67ffffffffffffffff811161108c5760051b60200190565b906116aa82611688565b6116b760405191826110be565b82815280926116c8601f1991611688565b0190602036910137565b919082018092116116df57565b634e487b7160e01b600052601160045260246000fd5b919082039182116116df57565b80518210156112f55760209160051b010190565b919060085490818410156117ca5761172e90846116d2565b908082116117c2575b5061174a61174584836116f5565b6116a0565b9061175861174585836116f5565b93805b828110611769575050509190565b8060406117776001936112be565b905490600391858060a01b0391831b1c16908161179d61179788876116f5565b8a611702565b52600091825260205220546117bb6117b585846116f5565b89611702565b520161175b565b905038611737565b505060405191506117da826110a2565b60008252604051916117eb836110a2565b6000835260003681379190565b60405163bbe4f6db60e01b81523060048201526001600160a01b03906101a09081816024817f00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe45687165afa90811561187c576101409260009261185f575b5050015116151590565b6118759250803d10610b2957610b1a81836110be565b3880611855565b6040513d6000823e3d90fd5b9060085490818310156119025761189f90836116d2565b908082116118fa575b506118b661174583836116f5565b91805b8281106118c65750505090565b806118d26001926112be565b838060a01b0391549060031b1c166118f36118ed85846116f5565b87611702565b52016118b9565b9050386118a8565b505050604051611911816110a2565b60008152600036813790565b9060018060a01b03809216600090808252600960205260ff60408320541615611947575b50509050565b600854936801000000000000000085101561199d5761196f85600160409697016008556112be565b819291549060031b9184831b921b19161790558152600960205220600160ff19825416179055803880611941565b634e487b7160e01b83526041600452602483fdfea264697066735822122026a7310de205104595122e97d70d81568ebefa0aecacc5a90075af269f8c16de64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c000000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe456000000000000000000000000bc5cfb0ded4b7779cff1da8b08ad5bbfa6500058000000000000000000000000000000000000000000000000000000000000000a5363726f6c6c20436174000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004534341540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000124a75737420436174206f6e205363726f6c6c000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000125363726f6c6c2050756d70206c61756e63680000000000000000000000000000
-----Decoded View---------------
Arg [0] : _name (string): Scroll Cat
Arg [1] : _symbol (string): SCAT
Arg [2] : _decimals (uint8): 18
Arg [3] : _supply (uint256): 1000000000000000000000000000
Arg [4] : _description (string): Just Cat on Scroll
Arg [5] : _extended (string): Scroll Pump launch
Arg [6] : _sPumpFoundry (address): 0x56d456d96BAf484026Fc333B7E4794ca70DfE456
Arg [7] : _creator (address): 0xBC5cFb0DeD4B7779CfF1Da8b08Ad5BBfa6500058
-----Encoded View---------------
16 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [3] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [5] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [6] : 00000000000000000000000056d456d96baf484026fc333b7e4794ca70dfe456
Arg [7] : 000000000000000000000000bc5cfb0ded4b7779cff1da8b08ad5bbfa6500058
Arg [8] : 000000000000000000000000000000000000000000000000000000000000000a
Arg [9] : 5363726f6c6c2043617400000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [11] : 5343415400000000000000000000000000000000000000000000000000000000
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [13] : 4a75737420436174206f6e205363726f6c6c0000000000000000000000000000
Arg [14] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [15] : 5363726f6c6c2050756d70206c61756e63680000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.