ETH Price: $2,930.85 (+0.82%)
 

Overview

ETH Balance

Scroll LogoScroll LogoScroll Logo0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Swap154564392025-05-14 19:38:25257 days ago1747251505IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000029080.02076323
Swap154560432025-05-14 19:14:51257 days ago1747250091IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000022110.02076299
Swap154557722025-05-14 19:01:19257 days ago1747249279IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000025510.02073624
Swap154551532025-05-14 18:33:11257 days ago1747247591IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000039350.02074425
Swap154549162025-05-14 18:23:25257 days ago1747247005IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000031420.02076044
Swap154544552025-05-14 18:08:50257 days ago1747246130IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000029250.02073901
Swap154535002025-05-14 17:40:48257 days ago1747244448IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000020230.02075354
Swap154520532025-05-14 17:01:27258 days ago1747242087IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000017350.02075769
Swap154519812025-05-14 16:58:39258 days ago1747241919IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000026570.02074566
Swap154519442025-05-14 16:57:15258 days ago1747241835IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000023320.02074905
Swap154509862025-05-14 16:19:31258 days ago1747239571IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000021790.02081264
Swap154507382025-05-14 16:09:13258 days ago1747238953IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000020860.02076548
Swap154504842025-05-14 15:59:07258 days ago1747238347IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000025890.02077739
Swap154504452025-05-14 15:57:28258 days ago1747238248IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000019080.02077209
Swap154499882025-05-14 15:36:33258 days ago1747236993IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000040550.02082816
Swap154464782025-05-14 13:37:55258 days ago1747229875IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.00003190.02083359
Swap154459322025-05-14 13:15:17258 days ago1747228517IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000022340.02085773
Swap154452502025-05-14 12:44:39258 days ago1747226679IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000023940.02093267
Swap154450082025-05-14 12:31:36258 days ago1747225896IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.00002440.02095301
Swap154447372025-05-14 12:16:07258 days ago1747224967IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000027030.02088712
Swap154447172025-05-14 12:15:30258 days ago1747224930IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000018560.02086685
Swap154445672025-05-14 12:08:36258 days ago1747224516IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000030680.02075579
Swap154436922025-05-14 11:33:28258 days ago1747222408IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000018320.02072879
Swap154399072025-05-14 9:20:03258 days ago1747214403IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000038150.02075933
Swap154391392025-05-14 9:05:25258 days ago1747213525IN
0x38Ce1a31...7d31A2Ef4
0 ETH0.000018280.02078647
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
OpenOceanSwapModule

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

import {OpenOceanSwapDescription, IOpenOceanCaller, IOpenOceanRouter} from "../../interfaces/IOpenOcean.sol";
import { IEtherFiSafe } from "../../interfaces/IEtherFiSafe.sol";
import { ModuleBase } from "../ModuleBase.sol";

/**
 * @title OpenOceanSwapModule
 * @author ether.fi
 * @notice Module for executing token swaps through OpenOcean exchange
 * @dev Extends ModuleBase to integrate with the EtherFi ecosystem
 */
contract OpenOceanSwapModule is ModuleBase {
    using MessageHashUtils for bytes32;

    /// @notice OpenOcean router contract to give allowance to perform swaps
    address public immutable swapRouter;

    /// @notice TypeHash for swap function signature
    bytes32 public constant SWAP_SIG = keccak256("swap");

    /**
     * @notice Emitted when a swap is executed on a Safe
     * @param safe Address of the EtherFi safe to execute the swap from
     * @param fromAsset Address of the token being sold (or ETH address for native swaps)
     * @param toAsset Address of the token being purchased (or ETH address for native swaps)
     * @param fromAssetAmount Amount of the source token to swap
     * @param minToAssetAmount Min return amount
     * @param returnAmt Final return amount
     */
    event SwapOnOpenOcean(address indexed safe, address indexed fromAsset, address indexed toAsset, uint256 fromAssetAmount, uint256 minToAssetAmount, uint256 returnAmt);

    /// @notice Thrown when trying to swap more tokens than available in the safe
    error InsufficientBalanceOnSafe();
    /// @notice Thrown when trying to swap a token for the same token
    error SwappingToSameAsset();
    /// @notice Thrown when swap returns less than the minimum expected amount
    error OutputLessThanMinAmount();
    /// @notice Error for Invalid Owner quorum signatures
    error InvalidSignatures();

    /**
     * @notice Initializes the OpenOceanSwapModule
     * @param _swapRouter Address of the OpenOcean swap router contract
     * @param _dataProvider Address of the EtherFi data provider contract
     */
    constructor(address _swapRouter, address _dataProvider) ModuleBase(_dataProvider) {
        swapRouter = _swapRouter;
    }

    /**
     * @notice Executes a token swap through OpenOcean
     * @param safe Address of the EtherFi safe to execute the swap from
     * @param fromAsset Address of the token being sold (or ETH address for native swaps)
     * @param toAsset Address of the token being purchased (or ETH address for native swaps)
     * @param fromAssetAmount Amount of the source token to swap
     * @param minToAssetAmount Minimum amount of the destination token to receive
     * @param guaranteedAmount Guaranteed amount as per OpenOcean's protocol
     * @param data Additional data needed for the swap, encoded as (bytes4, address, CallDescription[])
     * @param signers Addresses of the safe owners authorizing this swap
     * @param signatures Signatures from the signers authorizing this transaction
     * @dev Can only be called by an EtherFi safe, and requires signature from a safe admin
     * @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough source tokens
     * @custom:throws SwappingToSameAsset If trying to swap a token for itself
     * @custom:throws OutputLessThanMinAmount If swap returns less than the specified minimum
     */
    function swap(
        address safe, 
        address fromAsset, 
        address toAsset, 
        uint256 fromAssetAmount, 
        uint256 minToAssetAmount, 
        uint256 guaranteedAmount, 
        bytes calldata data, 
        address[] calldata signers, 
        bytes[] calldata signatures
    ) external onlyEtherFiSafe(safe) {
        _checkSignatures(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data, signers, signatures);
        _swap(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
    }

    /**
     * @notice Checks if the owner signatures are valid
     * @param safe Address of the EtherFi safe to execute the swap from
     * @param fromAsset Address of the token being sold (or ETH address for native swaps)
     * @param toAsset Address of the token being purchased (or ETH address for native swaps)
     * @param fromAssetAmount Amount of the source token to swap
     * @param minToAssetAmount Minimum amount of the destination token to receive
     * @param guaranteedAmount Guaranteed amount as per OpenOcean's protocol
     * @param data Additional data needed for the swap, encoded as (bytes4, address, CallDescription[])
     * @param signers Addresses of the safe owners authorizing this swap
     * @param signatures Signatures from the signers authorizing this transaction
     * @custom:throws InvalidSignatures if the signatures are invalid
     */
    function _checkSignatures(
        address safe, 
        address fromAsset, 
        address toAsset, 
        uint256 fromAssetAmount, 
        uint256 minToAssetAmount, 
        uint256 guaranteedAmount, 
        bytes calldata data, 
        address[] calldata signers, 
        bytes[] calldata signatures
    ) internal {
        bytes32 digestHash = _createDigest(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
        if (!IEtherFiSafe(safe).checkSignatures(digestHash, signers, signatures)) revert InvalidSignatures();
    }

    /**
     * @notice Creates a digest hash for signature verification
     * @param safe Address of the EtherFi safe
     * @param fromAsset Address of the source token
     * @param toAsset Address of the destination token
     * @param fromAssetAmount Amount of the source token
     * @param minToAssetAmount Minimum expected amount of destination token
     * @param guaranteedAmount Guaranteed amount as per OpenOcean
     * @param data Additional swap data
     * @return Digest hash for signature verification
     */
    function _createDigest(
        address safe,
        address fromAsset,
        address toAsset,
        uint256 fromAssetAmount,
        uint256 minToAssetAmount,
        uint256 guaranteedAmount,
        bytes calldata data
    ) internal returns(bytes32) {
        return keccak256(abi.encodePacked(
            SWAP_SIG, 
            block.chainid, 
            address(this), 
            IEtherFiSafe(safe).useNonce(), 
            safe, 
            abi.encode(fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data)
        )).toEthSignedMessageHash();
    }

    /**
     * @notice Internal function to execute the token swap
     * @param safe Address of the EtherFi safe
     * @param fromAsset Address of the source token
     * @param toAsset Address of the destination token
     * @param fromAssetAmount Amount of the source token
     * @param minToAssetAmount Minimum expected amount of destination token
     * @param guaranteedAmount Guaranteed amount as per OpenOcean
     * @param data Additional swap data
     * @dev Handles the core swap logic and verification of received amounts
     * @custom:throws SwappingToSameAsset If trying to swap a token for itself
     * @custom:throws InvalidInput If minimum expected amount is 0
     * @custom:throws OutputLessThanMinAmount If swap returns less than expected
     */
    function _swap(
        address safe,
        address fromAsset,
        address toAsset,
        uint256 fromAssetAmount,
        uint256 minToAssetAmount,
        uint256 guaranteedAmount,
        bytes calldata data
    ) internal {
        if (fromAsset == toAsset) revert SwappingToSameAsset();
        if (minToAssetAmount == 0) revert InvalidInput();
        
        uint256 balBefore;
        if (toAsset == ETH) balBefore = address(safe).balance;
        else balBefore = IERC20(toAsset).balanceOf(safe);

        address[] memory to; 
        uint256[] memory value; 
        bytes[] memory callData;
        if (fromAsset == ETH) (to, value, callData) = _swapNative(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
        else (to, value, callData) = _swapERC20(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);

        IEtherFiSafe(safe).execTransactionFromModule(to, value, callData);

        uint256 balAfter;
        if (toAsset == ETH) balAfter = address(safe).balance;
        else balAfter = IERC20(toAsset).balanceOf(safe);

        uint256 receivedAmt = balAfter - balBefore;
        if (receivedAmt < minToAssetAmount) revert OutputLessThanMinAmount();

        emit SwapOnOpenOcean(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, receivedAmt);
    }

    /**
     * @notice Prepares an ERC20 token swap transaction
     * @param safe Address of the EtherFi safe
     * @param fromAsset Address of the source ERC20 token
     * @param toAsset Address of the destination token
     * @param fromAssetAmount Amount of the source token
     * @param minToAssetAmount Minimum expected amount of destination token
     * @param guaranteedAmount Guaranteed amount as per OpenOcean
     * @param data Additional swap data
     * @return to Array of target addresses for transactions
     * @return value Array of ETH values for transactions
     * @return callData Array of calldata for transactions
     * @dev Creates both the approval and swap transactions
     * @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough tokens
     */
    function _swapERC20(
        address safe,
        address fromAsset,
        address toAsset,
        uint256 fromAssetAmount,
        uint256 minToAssetAmount,
        uint256 guaranteedAmount,
        bytes calldata data
    ) internal view returns (address[] memory to, uint256[] memory value, bytes[] memory callData) { 
        if (IERC20(fromAsset).balanceOf(safe) < fromAssetAmount) revert InsufficientBalanceOnSafe();

        to = new address[](2);
        value = new uint256[](2);
        callData = new bytes[](2);

        to[0] = fromAsset;
        callData[0] = abi.encodeWithSelector(IERC20.approve.selector, swapRouter, fromAssetAmount);

        to[1] = swapRouter;
        callData[1] = _getSwapData(false, safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
    }

    /**
     * @notice Prepares a native ETH swap transaction
     * @param safe Address of the EtherFi safe
     * @param fromAsset Address representing ETH (should be ETH address constant)
     * @param toAsset Address of the destination token
     * @param fromAssetAmount Amount of ETH to swap
     * @param minToAssetAmount Minimum expected amount of destination token
     * @param guaranteedAmount Guaranteed amount as per OpenOcean
     * @param data Additional swap data
     * @return to Array of target addresses for transactions
     * @return value Array of ETH values for transactions
     * @return callData Array of calldata for transactions
     * @dev Creates the swap transaction with ETH value
     * @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough ETH
     */
    function _swapNative(
        address safe,
        address fromAsset,
        address toAsset,
        uint256 fromAssetAmount,
        uint256 minToAssetAmount,
        uint256 guaranteedAmount,
        bytes calldata data
    ) internal view returns (address[] memory to, uint256[] memory value, bytes[] memory callData) {
        if (address(safe).balance < fromAssetAmount) revert InsufficientBalanceOnSafe();

        to = new address[](1);
        value = new uint256[](1);
        callData = new bytes[](1);

        to[0] = swapRouter;
        value[0] = fromAssetAmount;
        callData[0] = _getSwapData(true, safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
    }

    /**
     * @notice Generates the OpenOcean swap function call data
     * @param isNative Whether the swap involves native ETH
     * @param safe Address of the EtherFi safe
     * @param fromAsset Address of the source token
     * @param toAsset Address of the destination token
     * @param fromAssetAmount Amount of the source token
     * @param minToAssetAmount Minimum expected amount of destination token
     * @param guaranteedAmount Guaranteed amount as per OpenOcean
     * @param data Additional swap data
     * @return Encoded calldata for the OpenOcean swap function
     * @dev Decodes the provided data and constructs the OpenOcean swap description
     */
    function _getSwapData(
        bool isNative,
        address safe,
        address fromAsset,
        address toAsset,
        uint256 fromAssetAmount,
        uint256 minToAssetAmount,
        uint256 guaranteedAmount,
        bytes calldata data
    ) internal pure returns (bytes memory) {
        ( , address executor, IOpenOceanCaller.CallDescription[] memory calls) = abi.decode(data, (bytes4, address, IOpenOceanCaller.CallDescription[]));

        OpenOceanSwapDescription memory swapDesc = OpenOceanSwapDescription({
            srcToken: IERC20(fromAsset),
            dstToken: IERC20(toAsset),
            srcReceiver: payable(executor),
            dstReceiver: payable(safe),
            amount: fromAssetAmount,
            minReturnAmount: minToAssetAmount,
            guaranteedAmount: guaranteedAmount,
            flags: isNative ? 0 : 2,
            referrer: safe,
            permit: hex""
        });

        return abi.encodeWithSelector(IOpenOceanRouter.swap.selector, IOpenOceanCaller(executor), swapDesc, calls);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

struct OpenOceanSwapDescription {
    IERC20 srcToken;
    IERC20 dstToken;
    address srcReceiver;
    address dstReceiver;
    uint256 amount;
    uint256 minReturnAmount;
    uint256 guaranteedAmount;
    uint256 flags;
    address referrer;
    bytes permit;
}

/// @title Interface for making arbitrary calls during swap
interface IOpenOceanCaller {
    struct CallDescription {
        uint256 target;
        uint256 gasLimit;
        uint256 value;
        bytes data;
    }

    function makeCall(CallDescription memory desc) external;

    function makeCalls(CallDescription[] memory desc) external payable;
}

interface IOpenOceanRouter {
    /// @notice Performs a swap, delegating all calls encoded in `data` to `executor`.
    function swap(
        IOpenOceanCaller caller,
        OpenOceanSwapDescription calldata desc,
        IOpenOceanCaller.CallDescription[] calldata calls
    ) external returns (uint256 returnAmount);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IEtherFiSafe {
    /**
     * @notice Verifies signatures against a digest hash until reaching the required threshold
     * @param digestHash The hash of the data that was signed
     * @param signers Array of addresses that supposedly signed the message
     * @param signatures Array of signatures corresponding to the signers
     * @return bool True if enough valid signatures are found to meet the threshold
     * @dev Processes signatures until threshold is met. Invalid signatures are skipped.
     * @custom:throws EmptySigners If the signers array is empty
     * @custom:throws ArrayLengthMismatch If the lengths of signers and signatures arrays do not match
     * @custom:throws InsufficientSigners If the length of signers array is less than the required threshold
     * @custom:throws DuplicateElementFound If the signers array contains duplicate addresses
     * @custom:throws InvalidSigner If a signer is the zero address or not an owner of the safe
     */
    function checkSignatures(bytes32 digestHash, address[] calldata signers, bytes[] calldata signatures) external view returns (bool);

    /**
     * @notice Executes a transaction from an authorized module
     * @dev Allows modules to execute arbitrary transactions on behalf of the safe
     * @param to Array of target addresses for the calls
     * @param values Array of ETH values to send with each call
     * @param data Array of calldata for each call
     * @custom:throws OnlyModules If the caller is not an enabled module
     * @custom:throws CallFailed If any of the calls fail
     */
    function execTransactionFromModule(address[] calldata to, uint256[] calldata values, bytes[] calldata data) external;

    /**
     * @notice Gets the current nonce value
     * @dev Used for replay protection in signatures
     * @return Current nonce value
     */
    function nonce() external view returns (uint256);

    /**
     * @notice Returns all current owners of the safe
     * @dev Implementation of the abstract function from ModuleManager
     * @return address[] Array containing all owner addresses
     */
    function getOwners() external view returns (address[] memory);

    /**
     * @notice Uses a nonce for operations in modules which require a quorum of owners
     * @dev Can only be called by enabled modules
     * @return uint256 The current nonce value before incrementing
     * @custom:throws OnlyModules If the caller is not an enabled module
     */
    function useNonce() external returns (uint256);

    function isAdmin(address account) external view returns (bool); 
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { IEtherFiDataProvider } from "../interfaces/IEtherFiDataProvider.sol";
import { IEtherFiSafe } from "../interfaces/IEtherFiSafe.sol";
import { SignatureUtils } from "../libraries/SignatureUtils.sol";
import { Constants } from "../utils/Constants.sol";

/**
 * @title ModuleBase
 * @author ether.fi
 * @notice Base contract for implementing modules with admin functionality
 * @dev Provides common functionality for modules including admin management and signature verification
 *      Uses ERC-7201 for namespace storage pattern
 */
contract ModuleBase is Constants {
    using SignatureUtils for bytes32;

    IEtherFiDataProvider public immutable etherFiDataProvider;

    /// @notice Throws when the msg.sender is not an admin to the safe
    error OnlySafeAdmin();
    /// @notice Thrown when the input is invalid
    error InvalidInput();
    /// @notice Thrown when the signature verification fails
    error InvalidSignature();
    /// @notice Thrown when there is an array length mismatch
    error ArrayLengthMismatch();
    /// @notice Thrown when the caller is not an EtherFi Safe
    error OnlyEtherFiSafe();

    /// @custom:storage-location erc7201:etherfi.storage.ModuleBaseStorage
    struct ModuleBaseStorage {
        /// @notice Mapping of Safe addresses to their nonces for replay protection
        mapping(address safe => uint256 nonce) nonces;
    }

    // keccak256(abi.encode(uint256(keccak256("etherfi.storage.ModuleBaseStorage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ModuleBaseStorageLocation = 0x9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00;

    constructor(address _etherFiDataProvider) {
        if (_etherFiDataProvider == address(0)) revert InvalidInput();
        etherFiDataProvider = IEtherFiDataProvider(_etherFiDataProvider);
    }

    /**
     * @dev Returns the storage struct from the specified storage slot
     * @return $ Reference to the ModuleBaseStorage struct
     */
    function _getModuleBaseStorage() internal pure returns (ModuleBaseStorage storage $) {
        assembly {
            $.slot := ModuleBaseStorageLocation
        }
    }

    /**
     * @notice Returns the current nonce for a Safe
     * @param safe The Safe address to query
     * @return Current nonce value
     * @dev Nonces are used to prevent signature replay attacks
     */
    function getNonce(address safe) public view returns (uint256) {
        return _getModuleBaseStorage().nonces[safe];
    }

    /**
     * @dev Uses and increments the nonce for a Safe
     * @param safe The Safe address
     * @return The nonce value before incrementing
     */
    function _useNonce(address safe) internal returns (uint256) {
        ModuleBaseStorage storage $ = _getModuleBaseStorage();

        unchecked {
            return $.nonces[safe]++;
        }
    }

    /**
     * @dev Verifies if a signature is valid and made by an admin of the safe
     * @param digestHash The message hash that was signed
     * @param signer The address that supposedly signed the message
     * @param signature The signature to verify
     * @custom:throws SignerIsNotAnAdmin If the signer is not an admin of the Safe
     * @custom:throws InvalidSignature If the signature is invalid
     */
    function _verifyAdminSig(bytes32 digestHash, address signer, bytes calldata signature) internal view {
        if (!digestHash.isValidSignature(signer, signature)) revert InvalidSignature();
    }

    /**
     * @dev Ensures that the caller is an admin for the specified Safe
     * @param safe The Safe address to check admin status for
     */
    modifier onlySafeAdmin(address safe, address account) {
        if (!IEtherFiSafe(safe).isAdmin(account)) revert OnlySafeAdmin();
        _;
    }

    /**
     * @dev Ensures that the account is an instance of the deployed EtherfiSafe
     * @param account The account address to check
     */
    modifier onlyEtherFiSafe(address account) {
        if (!etherFiDataProvider.isEtherFiSafe(account)) revert OnlyEtherFiSafe();
        _;
    }

    /**
     * @notice Sets up a new Safe's Module with initial configuration
     * @dev Override this function to configure a module initially
     * @param data The encoded initialization data
     */
    function setupModule(bytes calldata data) external virtual { }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { IRoleRegistry } from "./IRoleRegistry.sol";

/**
 * @title IEtherFiDataProvider
 * @author ether.fi
 * @notice Interface for the EtherFiDataProvider contract that manages important data for ether.fi
 */
interface IEtherFiDataProvider {
    /**
     * @notice Configures multiple modules' whitelist status
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param modules Array of module addresses to configure
     * @param shouldWhitelist Array of boolean values indicating whether each module should be whitelisted
     */
    function configureModules(address[] calldata modules, bool[] calldata shouldWhitelist) external;

    /**
     * @notice Updates the hook address
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param hook New hook address to set
     */
    function setHookAddress(address hook) external;

    /**
     * @notice Updates the address of the Cash Module
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param cashModule New cash module address to set
     */
    function setCashModule(address cashModule) external;

    /**
     * @notice Checks if a module address is whitelisted
     * @param module Address to check
     * @return bool True if the module is whitelisted, false otherwise
     */
    function isWhitelistedModule(address module) external view returns (bool);

    /**
     * @notice Checks if a module address is a whitelisted default module
     * @param module Address to check
     * @return bool True if the module is a whitelisted default module, false otherwise
     */
    function isDefaultModule(address module) external view returns (bool);

    /**
     * @notice Retrieves all whitelisted module addresses
     * @return address[] Array of whitelisted module addresses
     */
    function getWhitelistedModules() external view returns (address[] memory);

    /**
     * @notice Returns the address of the Cash Module
     * @return Address of the cash module
     */
    function getCashModule() external view returns (address);

    /**
     * @notice Returns the address of the EtherFi Recovery signer
     * @return Address of the EtherFi Recovery Signer
     */
    function getEtherFiRecoverySigner() external view returns (address);

     /**
     * @notice Returns the address of the Third Party Recovery signer
     * @return Address of the Third Party Recovery Signer
     */
    function getThirdPartyRecoverySigner() external view returns (address);

    /**
     * @notice Returns the Recovery delay period in seconds
     * @return Recovery delay period in seconds
     */
    function getRecoveryDelayPeriod() external view returns (uint256);

    /**
     * @notice Returns the address of the Cash Lens contract
     * @return Address of the Cash Lens contract
     */
    function getCashLens() external view returns (address);

    /**
     * @notice Returns the address of the Price provider contract
     * @return Address of the Price provider contract
     */
    function getPriceProvider() external view returns (address);

    /**
     * @notice Returns the current hook address
     * @return address Current hook address
     */
    function getHookAddress() external view returns (address);

    function getEtherFiSafeFactory() external view returns (address);

    /**
     * @notice Function to check if an account is an EtherFiSafe
     * @param account Address of the account to check
     */
    function isEtherFiSafe(address account) external view returns (bool);

    /**
     * @notice Role identifier for administrative privileges
     * @return bytes32 The keccak256 hash of "ADMIN_ROLE"
     */
    function ADMIN_ROLE() external view returns (bytes32);

    /**
     * @notice Returns the address of the Role Registry contract
     * @return roleRegistry Reference to the role registry contract
     */
    function roleRegistry() external view returns (IRoleRegistry);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import { IERC1271 } from "@openzeppelin/contracts/interfaces/IERC1271.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

/**
 * @title Library of utilities for making EIP1271-compliant signature checks
 * @author ether.fi
 * @notice Provides functions to verify signatures from both EOAs and smart contracts implementing EIP-1271
 * @dev Implements signature verification following EIP-1271 standard for smart contracts
 * and standard ECDSA verification for EOAs
 */
library SignatureUtils {
    // bytes4(keccak256("isValidSignature(bytes32,bytes)")
    bytes4 internal constant EIP1271_MAGICVALUE = 0x1626ba7e;

    /// @notice Thrown when an EOA signature is invalid
    error InvalidSigner();
    /// @notice Thrown when an ERC1271 contract signature verification fails
    error InvalidERC1271Signer();

    /**
     * @notice Verifies if a signature is valid according to EIP-1271 standards
     * @dev For EOAs, uses ECDSA recovery. For contracts, calls EIP-1271 isValidSignature
     * @param digestHash The hash of the data that was signed
     * @param signer The address that should have signed the data
     * @param signature The signature bytes
     * @custom:security Consider that contract signatures might have different gas costs
     * @custom:warning The isContract check may return false positives during contract construction
     * @custom:throws InvalidSigner If the EOA signature is invalid
     * @custom:throws InvalidERC1271Signer If the contract signature verification fails
     */
    function checkSignature(bytes32 digestHash, address signer, bytes memory signature) internal view {
        if (isContract(signer)) {
            if (IERC1271(signer).isValidSignature(digestHash, signature) != EIP1271_MAGICVALUE) revert InvalidERC1271Signer();
        } else {
            if (ECDSA.recover(digestHash, signature) != signer) revert InvalidSigner();
        }
    }

    /**
     * @notice Returns whether a signature is valid according to EIP-1271 standards
     * @dev Similar to checkSignature_EIP1271 but returns boolean instead of reverting
     * @param digestHash The hash of the data that was signed
     * @param signer The address that should have signed the data
     * @param signature The signature bytes
     * @return bool True if the signature is valid, false otherwise
     * @custom:warning The isContract check may return false positives during contract construction
     */
    function isValidSignature(bytes32 digestHash, address signer, bytes memory signature) internal view returns (bool) {
        if (isContract(signer)) {
            return IERC1271(signer).isValidSignature(digestHash, signature) == EIP1271_MAGICVALUE;
        } else {
            return ECDSA.recover(digestHash, signature) == signer;
        }
    }

    /**
     * @notice Determines if an address is a contract
     * @dev Uses assembly to check if the address has code
     * @param account The address to check
     * @return bool True if the address has code (is a contract), false otherwise
     * @custom:warning This function returns false for contracts during their construction
     */
    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly ("memory-safe") {
            size := extcodesize(account)
        }
        return size > 0;
    }
}

File 12 of 22 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/**
 * @title Constants
 * @author ether.fi
 * @notice Contract that defines commonly used constants across the ether.fi protocol
 * @dev This contract is not meant to be deployed but to be inherited by other contracts
 */
contract Constants {
    /**
     * @notice Special address used to represent native ETH in the protocol
     * @dev This address is used as a marker since ETH is not an ERC20 token
     */
    address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
}

File 13 of 22 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 14 of 22 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 16 of 22 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/**
 * @title IRoleRegistry
 * @notice Interface for role-based access control management
 * @dev Provides functions for managing and querying role assignments
 */
interface IRoleRegistry {
    /**
     * @notice Verifies if an account has pauser privileges
     * @param account The address to check for pauser role
     * @custom:throws Reverts if account is not an authorized pauser
     */
    function onlyPauser(address account) external view;

    /**
     * @notice Verifies if an account has unpauser privileges
     * @param account The address to check for unpauser role
     * @custom:throws Reverts if account is not an authorized unpauser
     */
    function onlyUnpauser(address account) external view;

    /**
     * @notice Checks if an account has any of the specified roles
     * @dev Reverts if the account doesn't have at least one of the roles
     * @param account The address to check roles for
     * @param encodedRoles ABI encoded roles using abi.encode(ROLE_1, ROLE_2, ...)
     * @custom:throws Reverts if account has none of the specified roles
     */
    function checkRoles(address account, bytes memory encodedRoles) external view;

    /**
     * @notice Checks if an account has a specific role
     * @dev Direct query for a single role status
     * @param role The role identifier to check
     * @param account The address to check the role for
     * @return True if the account has the role, false otherwise
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @notice Grants a role to an account
     * @dev Only callable by the contract owner
     * @param role The role identifier to grant
     * @param account The address to grant the role to
     * @custom:access Restricted to contract owner
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @notice Revokes a role from an account
     * @dev Only callable by the contract owner
     * @param role The role identifier to revoke
     * @param account The address to revoke the role from
     * @custom:access Restricted to contract owner
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @notice Retrieves all addresses that have a specific role
     * @dev Wrapper around EnumerableRoles roleHolders function
     * @param role The role identifier to query
     * @return Array of addresses that have the specified role
     */
    function roleHolders(bytes32 role) external view returns (address[] memory);

    /**
     * @notice Verifies if an account has upgrader privileges
     * @dev Used for upgrade authorization checks
     * @param account The address to check for upgrader role
     * @custom:throws Reverts if account is not an authorized upgrader
     */
    function onlyUpgrader(address account) external view;

    /**
     * @notice Returns the owner of the contract
     * @return result Owner of the contract
     */
    function owner() external view returns (address result);

    /**
     * @notice Generates a unique role identifier for safe administrators
     * @dev Creates a unique bytes32 identifier by hashing the safe address with a role type
     * @param safe The address of the safe for which to generate the admin role
     * @return bytes32 A unique role identifier for the specified safe's admins
     * @custom:throws InvalidInput if safe is a zero address
     */
    function getSafeAdminRole(address safe) external pure returns (bytes32);

    /**
     * @notice Configures admin roles for a specific safe
     * @dev Grants/revokes admin privileges to specified addresses for a particular safe
     * @param accounts Array of admin addresses to configure
     * @param shouldAdd Array indicating whether to add or remove each admin
     * @custom:throws OnlyEtherFiSafe if called by any address other than a registered EtherFiSafe
     * @custom:throws InvalidInput if the admins array is empty or contains a zero address
     * @custom:throws ArrayLengthMismatch if the array lengths mismatch
     */
    function configureSafeAdmins(address[] calldata accounts, bool[] calldata shouldAdd) external;

    /**
     * @notice Verifies if an account has safe admin privileges
     * @param safe The address of the safe
     * @param account The address to check for safe admin role
     * @custom:throws OnlySafeAdmin if the account does not have the SafeAdmin role
     */
    function onlySafeAdmin(address safe, address account) external view;

    /**
     * @notice Returns if an account has safe admin privileges
     * @param safe The address of the safe
     * @param account The address to check for safe admin role
     * @return bool suggesting if the account has the safe admin role
     */
    function isSafeAdmin(address safe, address account) external view returns (bool);

    /**
     * @notice Retrieves all addresses that have the safe admin role for a particular safe
     * @param safe The address of the safe
     * @return Array of addresses that have the safe admin role
     */
    function getSafeAdmins(address safe) external view returns (address[] memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_swapRouter","type":"address"},{"internalType":"address","name":"_dataProvider","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"InsufficientBalanceOnSafe","type":"error"},{"inputs":[],"name":"InvalidInput","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidSignatures","type":"error"},{"inputs":[],"name":"OnlyEtherFiSafe","type":"error"},{"inputs":[],"name":"OnlySafeAdmin","type":"error"},{"inputs":[],"name":"OutputLessThanMinAmount","type":"error"},{"inputs":[],"name":"SwappingToSameAsset","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"safe","type":"address"},{"indexed":true,"internalType":"address","name":"fromAsset","type":"address"},{"indexed":true,"internalType":"address","name":"toAsset","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAssetAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"minToAssetAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"returnAmt","type":"uint256"}],"name":"SwapOnOpenOcean","type":"event"},{"inputs":[],"name":"ETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SWAP_SIG","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"etherFiDataProvider","outputs":[{"internalType":"contract IEtherFiDataProvider","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"safe","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"setupModule","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"safe","type":"address"},{"internalType":"address","name":"fromAsset","type":"address"},{"internalType":"address","name":"toAsset","type":"address"},{"internalType":"uint256","name":"fromAssetAmount","type":"uint256"},{"internalType":"uint256","name":"minToAssetAmount","type":"uint256"},{"internalType":"uint256","name":"guaranteedAmount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"address[]","name":"signers","type":"address[]"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60c060405234801561000f575f5ffd5b5060405161158538038061158583398101604081905261002e9161008c565b806001600160a01b0381166100565760405163b4fa3fb360e01b815260040160405180910390fd5b6001600160a01b039081166080529190911660a052506100bd565b80516001600160a01b0381168114610087575f5ffd5b919050565b5f5f6040838503121561009d575f5ffd5b6100a683610071565b91506100b460208401610071565b90509250929050565b60805160a05161148b6100fa5f395f818161015e015281816107e2015281816109bf0152610a3601525f818161018501526101c8015261148b5ff3fe608060405234801561000f575f5ffd5b506004361061007a575f3560e01c80638322fff2116100585780638322fff214610114578063909030d514610147578063c31c9c0714610159578063f9fba81b14610180575f5ffd5b806305f1ccac1461007e5780632c541f7c146100935780632d0335ab146100cd575b5f5ffd5b61009161008c366004610c61565b6101a7565b005b6100ba7f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2981565b6040519081526020015b60405180910390f35b6100ba6100db366004610d52565b6001600160a01b03165f9081527f9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00602052604090205490565b61012f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b6040516001600160a01b0390911681526020016100c4565b610091610155366004610d74565b5050565b61012f7f000000000000000000000000000000000000000000000000000000000000000081565b61012f7f000000000000000000000000000000000000000000000000000000000000000081565b60405163b7ca418b60e01b81526001600160a01b03808e1660048301528d917f00000000000000000000000000000000000000000000000000000000000000009091169063b7ca418b90602401602060405180830381865afa15801561020f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102339190610db2565b610250576040516334d0b49960e01b815260040160405180910390fd5b6102648d8d8d8d8d8d8d8d8d8d8d8d610283565b6102748d8d8d8d8d8d8d8d610327565b50505050505050505050505050565b5f6102948d8d8d8d8d8d8d8d610627565b60405163a732422d60e01b81529091506001600160a01b038e169063a732422d906102cb9084908990899089908990600401610df9565b602060405180830381865afa1580156102e6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061030a9190610db2565b6102745760405163274cf40160e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03160361035957604051636b726f9b60e11b815260040160405180910390fd5b835f036103795760405163b4fa3fb360e01b815260040160405180910390fd5b5f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038816016103b057506001600160a01b0388163161041b565b6040516370a0823160e01b81526001600160a01b038a811660048301528816906370a0823190602401602060405180830381865afa1580156103f4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104189190610ee6565b90505b6060808073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038c1601610460576104548c8c8c8c8c8c8c8c610744565b91945092509050610478565b6104708c8c8c8c8c8c8c8c61088f565b919450925090505b604051632f378c5f60e21b81526001600160a01b038d169063bcde317c906104a890869086908690600401610f85565b5f604051808303815f87803b1580156104bf575f5ffd5b505af11580156104d1573d5f5f3e3d5ffd5b505050505f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee6001600160a01b03168b6001600160a01b03160361051457506001600160a01b038c163161057f565b6040516370a0823160e01b81526001600160a01b038e811660048301528c16906370a0823190602401602060405180830381865afa158015610558573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061057c9190610ee6565b90505b5f61058a8683611021565b9050898110156105ad576040516338c66f1160e21b815260040160405180910390fd5b8b6001600160a01b03168d6001600160a01b03168f6001600160a01b03167f2a82dfb47a9ce5b4d3c76dc499e939db2e5b219478977ba3637014724c0997438e8e8660405161060f939291909283526020830191909152604082015260600190565b60405180910390a45050505050505050505050505050565b5f6107377f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2946308c6001600160a01b03166369615a4c6040518163ffffffff1660e01b81526004016020604051808303815f875af115801561068b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106af9190610ee6565b8d8d8d8d8d8d8d8d6040516020016106cd9796959493929190611046565b60408051601f19818403018152908290526106ef969594939291602001611087565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b9998505050505050505050565b6060806060878b6001600160a01b0316311015610774576040516308b4578f60e01b815260040160405180910390fd5b6040805160018082528183019092529060208083019080368337505060408051600180825281830190925292955090506020808301908036833701905050604080516001808252818301909252919350816020015b60608152602001906001900390816107c95790505090507f0000000000000000000000000000000000000000000000000000000000000000835f81518110610813576108136110fb565b60200260200101906001600160a01b031690816001600160a01b03168152505087825f81518110610846576108466110fb565b60200260200101818152505061086460018c8c8c8c8c8c8c8c610aac565b815f81518110610876576108766110fb565b6020026020010181905250985098509895505050505050565b6040516370a0823160e01b81526001600160a01b0389811660048301526060918291829189918c16906370a0823190602401602060405180830381865afa1580156108dc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109009190610ee6565b101561091f576040516308b4578f60e01b815260040160405180910390fd5b604080516002808252606082018352909160208301908036833750506040805160028082526060820183529396509291506020830190803683370190505060408051600280825260608201909252919350816020015b606081526020019060019003908161097557905050905089835f8151811061099f5761099f6110fb565b6001600160a01b03928316602091820292909201810191909152604080517f0000000000000000000000000000000000000000000000000000000000000000909316602484015260448084018c90528151808503909101815260649093019052810180516001600160e01b031663095ea7b360e01b179052815182905f90610a2957610a296110fb565b60200260200101819052507f000000000000000000000000000000000000000000000000000000000000000083600181518110610a6857610a686110fb565b60200260200101906001600160a01b031690816001600160a01b031681525050610a995f8c8c8c8c8c8c8c8c610aac565b81600181518110610876576108766110fb565b60605f80610abc84860186611167565b92509250505f6040518061014001604052808c6001600160a01b031681526020018b6001600160a01b03168152602001846001600160a01b031681526020018d6001600160a01b031681526020018a81526020018981526020018881526020018e610b28576002610b2a565b5f5b60ff1681526020018d6001600160a01b0316815260200160405180602001604052805f81525081525090506390411a3260e01b838284604051602401610b7293929190611394565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915293505050509998505050505050505050565b6001600160a01b0381168114610bca575f5ffd5b50565b8035610bd881610bb6565b919050565b5f5f83601f840112610bed575f5ffd5b5081356001600160401b03811115610c03575f5ffd5b602083019150836020828501011115610c1a575f5ffd5b9250929050565b5f5f83601f840112610c31575f5ffd5b5081356001600160401b03811115610c47575f5ffd5b6020830191508360208260051b8501011115610c1a575f5ffd5b5f5f5f5f5f5f5f5f5f5f5f5f6101208d8f031215610c7d575f5ffd5b610c868d610bcd565b9b50610c9460208e01610bcd565b9a50610ca260408e01610bcd565b995060608d0135985060808d0135975060a08d013596506001600160401b0360c08e01351115610cd0575f5ffd5b610ce08e60c08f01358f01610bdd565b90965094506001600160401b0360e08e01351115610cfc575f5ffd5b610d0c8e60e08f01358f01610c21565b90945092506001600160401b036101008e01351115610d29575f5ffd5b610d3a8e6101008f01358f01610c21565b81935080925050509295989b509295989b509295989b565b5f60208284031215610d62575f5ffd5b8135610d6d81610bb6565b9392505050565b5f5f60208385031215610d85575f5ffd5b82356001600160401b03811115610d9a575f5ffd5b610da685828601610bdd565b90969095509350505050565b5f60208284031215610dc2575f5ffd5b81518015158114610d6d575f5ffd5b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b85815260606020820181905281018490525f8560808301825b87811015610e42578235610e2581610bb6565b6001600160a01b0316825260209283019290910190600101610e12565b50838103604085015284815260208082019250600586901b820101865f36829003601e19015b88821015610ed557848403601f190186528235818112610e86575f5ffd5b8a016020810190356001600160401b03811115610ea1575f5ffd5b803603821315610eaf575f5ffd5b610eba868284610dd1565b95505050602083019250602086019550600182019150610e68565b50919b9a5050505050505050505050565b5f60208284031215610ef6575f5ffd5b5051919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f19858403018852610f63838351610efd565b6020988901989093509190910190600101610f47565b50909695505050505050565b606080825284519082018190525f9060208601906080840190835b81811015610fc75783516001600160a01b0316835260209384019390920191600101610fa0565b5050838103602080860191909152865180835291810192508601905f5b81811015611002578251845260209384019390920191600101610fe4565b50505082810360408401526110178185610f2b565b9695505050505050565b8181038181111561104057634e487b7160e01b5f52601160045260245ffd5b92915050565b6001600160a01b0388811682528716602082015260408101869052606081018590526080810184905260c060a082018190525f906107379083018486610dd1565b8681528560208201526bffffffffffffffffffffffff198560601b1660408201528360548201526bffffffffffffffffffffffff198360601b1660748201525f82518060208501608885015e5f9201608801918252509695505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b604051608081016001600160401b0381118282101715611131576111316110e7565b60405290565b604051601f8201601f191681016001600160401b038111828210171561115f5761115f6110e7565b604052919050565b5f5f5f60608486031215611179575f5ffd5b83356001600160e01b031981168114611190575f5ffd5b925060208401356111a081610bb6565b915060408401356001600160401b038111156111ba575f5ffd5b8401601f810186136111ca575f5ffd5b80356001600160401b038111156111e3576111e36110e7565b8060051b6111f360208201611137565b9182526020818401810192908101908984111561120e575f5ffd5b6020850192505b8383101561130c5782356001600160401b03811115611232575f5ffd5b85016080818c03601f19011215611247575f5ffd5b61124f61110f565b60208281013582526040808401359183019190915260608301359082015260808201356001600160401b03811115611285575f5ffd5b6020818401019250508b601f83011261129c575f5ffd5b81356001600160401b038111156112b5576112b56110e7565b6112c8601f8201601f1916602001611137565b8181528d60208386010111156112dc575f5ffd5b816020850160208301375f6020838301015280606084015250508084525050602082019150602083019250611215565b80955050505050509250925092565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f198584030188528151805184526020810151602085015260408101516040850152606081015190506080606085015261137d6080850182610efd565b6020998a0199909450929092019150600101611337565b6001600160a01b038416815260606020820181905283516113bf918301906001600160a01b03169052565b5f60208401516113da60808401826001600160a01b03169052565b5060408401516001600160a01b03811660a08401525060608401516001600160a01b03811660c084015250608084015160e083015260a084015161010083015260c084015161012083015260e084015161014083015261010084015161144c6101608401826001600160a01b03169052565b5061012084015161014061018084015261146a6101a0840182610efd565b90508281036040840152611017818561131b56fea164736f6c634300081c000a0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778

Deployed Bytecode

0x608060405234801561000f575f5ffd5b506004361061007a575f3560e01c80638322fff2116100585780638322fff214610114578063909030d514610147578063c31c9c0714610159578063f9fba81b14610180575f5ffd5b806305f1ccac1461007e5780632c541f7c146100935780632d0335ab146100cd575b5f5ffd5b61009161008c366004610c61565b6101a7565b005b6100ba7f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2981565b6040519081526020015b60405180910390f35b6100ba6100db366004610d52565b6001600160a01b03165f9081527f9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00602052604090205490565b61012f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b6040516001600160a01b0390911681526020016100c4565b610091610155366004610d74565b5050565b61012f7f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e6481565b61012f7f000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a77881565b60405163b7ca418b60e01b81526001600160a01b03808e1660048301528d917f000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a7789091169063b7ca418b90602401602060405180830381865afa15801561020f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102339190610db2565b610250576040516334d0b49960e01b815260040160405180910390fd5b6102648d8d8d8d8d8d8d8d8d8d8d8d610283565b6102748d8d8d8d8d8d8d8d610327565b50505050505050505050505050565b5f6102948d8d8d8d8d8d8d8d610627565b60405163a732422d60e01b81529091506001600160a01b038e169063a732422d906102cb9084908990899089908990600401610df9565b602060405180830381865afa1580156102e6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061030a9190610db2565b6102745760405163274cf40160e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03160361035957604051636b726f9b60e11b815260040160405180910390fd5b835f036103795760405163b4fa3fb360e01b815260040160405180910390fd5b5f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038816016103b057506001600160a01b0388163161041b565b6040516370a0823160e01b81526001600160a01b038a811660048301528816906370a0823190602401602060405180830381865afa1580156103f4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104189190610ee6565b90505b6060808073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038c1601610460576104548c8c8c8c8c8c8c8c610744565b91945092509050610478565b6104708c8c8c8c8c8c8c8c61088f565b919450925090505b604051632f378c5f60e21b81526001600160a01b038d169063bcde317c906104a890869086908690600401610f85565b5f604051808303815f87803b1580156104bf575f5ffd5b505af11580156104d1573d5f5f3e3d5ffd5b505050505f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee6001600160a01b03168b6001600160a01b03160361051457506001600160a01b038c163161057f565b6040516370a0823160e01b81526001600160a01b038e811660048301528c16906370a0823190602401602060405180830381865afa158015610558573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061057c9190610ee6565b90505b5f61058a8683611021565b9050898110156105ad576040516338c66f1160e21b815260040160405180910390fd5b8b6001600160a01b03168d6001600160a01b03168f6001600160a01b03167f2a82dfb47a9ce5b4d3c76dc499e939db2e5b219478977ba3637014724c0997438e8e8660405161060f939291909283526020830191909152604082015260600190565b60405180910390a45050505050505050505050505050565b5f6107377f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2946308c6001600160a01b03166369615a4c6040518163ffffffff1660e01b81526004016020604051808303815f875af115801561068b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106af9190610ee6565b8d8d8d8d8d8d8d8d6040516020016106cd9796959493929190611046565b60408051601f19818403018152908290526106ef969594939291602001611087565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b9998505050505050505050565b6060806060878b6001600160a01b0316311015610774576040516308b4578f60e01b815260040160405180910390fd5b6040805160018082528183019092529060208083019080368337505060408051600180825281830190925292955090506020808301908036833701905050604080516001808252818301909252919350816020015b60608152602001906001900390816107c95790505090507f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64835f81518110610813576108136110fb565b60200260200101906001600160a01b031690816001600160a01b03168152505087825f81518110610846576108466110fb565b60200260200101818152505061086460018c8c8c8c8c8c8c8c610aac565b815f81518110610876576108766110fb565b6020026020010181905250985098509895505050505050565b6040516370a0823160e01b81526001600160a01b0389811660048301526060918291829189918c16906370a0823190602401602060405180830381865afa1580156108dc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109009190610ee6565b101561091f576040516308b4578f60e01b815260040160405180910390fd5b604080516002808252606082018352909160208301908036833750506040805160028082526060820183529396509291506020830190803683370190505060408051600280825260608201909252919350816020015b606081526020019060019003908161097557905050905089835f8151811061099f5761099f6110fb565b6001600160a01b03928316602091820292909201810191909152604080517f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64909316602484015260448084018c90528151808503909101815260649093019052810180516001600160e01b031663095ea7b360e01b179052815182905f90610a2957610a296110fb565b60200260200101819052507f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e6483600181518110610a6857610a686110fb565b60200260200101906001600160a01b031690816001600160a01b031681525050610a995f8c8c8c8c8c8c8c8c610aac565b81600181518110610876576108766110fb565b60605f80610abc84860186611167565b92509250505f6040518061014001604052808c6001600160a01b031681526020018b6001600160a01b03168152602001846001600160a01b031681526020018d6001600160a01b031681526020018a81526020018981526020018881526020018e610b28576002610b2a565b5f5b60ff1681526020018d6001600160a01b0316815260200160405180602001604052805f81525081525090506390411a3260e01b838284604051602401610b7293929190611394565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915293505050509998505050505050505050565b6001600160a01b0381168114610bca575f5ffd5b50565b8035610bd881610bb6565b919050565b5f5f83601f840112610bed575f5ffd5b5081356001600160401b03811115610c03575f5ffd5b602083019150836020828501011115610c1a575f5ffd5b9250929050565b5f5f83601f840112610c31575f5ffd5b5081356001600160401b03811115610c47575f5ffd5b6020830191508360208260051b8501011115610c1a575f5ffd5b5f5f5f5f5f5f5f5f5f5f5f5f6101208d8f031215610c7d575f5ffd5b610c868d610bcd565b9b50610c9460208e01610bcd565b9a50610ca260408e01610bcd565b995060608d0135985060808d0135975060a08d013596506001600160401b0360c08e01351115610cd0575f5ffd5b610ce08e60c08f01358f01610bdd565b90965094506001600160401b0360e08e01351115610cfc575f5ffd5b610d0c8e60e08f01358f01610c21565b90945092506001600160401b036101008e01351115610d29575f5ffd5b610d3a8e6101008f01358f01610c21565b81935080925050509295989b509295989b509295989b565b5f60208284031215610d62575f5ffd5b8135610d6d81610bb6565b9392505050565b5f5f60208385031215610d85575f5ffd5b82356001600160401b03811115610d9a575f5ffd5b610da685828601610bdd565b90969095509350505050565b5f60208284031215610dc2575f5ffd5b81518015158114610d6d575f5ffd5b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b85815260606020820181905281018490525f8560808301825b87811015610e42578235610e2581610bb6565b6001600160a01b0316825260209283019290910190600101610e12565b50838103604085015284815260208082019250600586901b820101865f36829003601e19015b88821015610ed557848403601f190186528235818112610e86575f5ffd5b8a016020810190356001600160401b03811115610ea1575f5ffd5b803603821315610eaf575f5ffd5b610eba868284610dd1565b95505050602083019250602086019550600182019150610e68565b50919b9a5050505050505050505050565b5f60208284031215610ef6575f5ffd5b5051919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f19858403018852610f63838351610efd565b6020988901989093509190910190600101610f47565b50909695505050505050565b606080825284519082018190525f9060208601906080840190835b81811015610fc75783516001600160a01b0316835260209384019390920191600101610fa0565b5050838103602080860191909152865180835291810192508601905f5b81811015611002578251845260209384019390920191600101610fe4565b50505082810360408401526110178185610f2b565b9695505050505050565b8181038181111561104057634e487b7160e01b5f52601160045260245ffd5b92915050565b6001600160a01b0388811682528716602082015260408101869052606081018590526080810184905260c060a082018190525f906107379083018486610dd1565b8681528560208201526bffffffffffffffffffffffff198560601b1660408201528360548201526bffffffffffffffffffffffff198360601b1660748201525f82518060208501608885015e5f9201608801918252509695505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b604051608081016001600160401b0381118282101715611131576111316110e7565b60405290565b604051601f8201601f191681016001600160401b038111828210171561115f5761115f6110e7565b604052919050565b5f5f5f60608486031215611179575f5ffd5b83356001600160e01b031981168114611190575f5ffd5b925060208401356111a081610bb6565b915060408401356001600160401b038111156111ba575f5ffd5b8401601f810186136111ca575f5ffd5b80356001600160401b038111156111e3576111e36110e7565b8060051b6111f360208201611137565b9182526020818401810192908101908984111561120e575f5ffd5b6020850192505b8383101561130c5782356001600160401b03811115611232575f5ffd5b85016080818c03601f19011215611247575f5ffd5b61124f61110f565b60208281013582526040808401359183019190915260608301359082015260808201356001600160401b03811115611285575f5ffd5b6020818401019250508b601f83011261129c575f5ffd5b81356001600160401b038111156112b5576112b56110e7565b6112c8601f8201601f1916602001611137565b8181528d60208386010111156112dc575f5ffd5b816020850160208301375f6020838301015280606084015250508084525050602082019150602083019250611215565b80955050505050509250925092565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f198584030188528151805184526020810151602085015260408101516040850152606081015190506080606085015261137d6080850182610efd565b6020998a0199909450929092019150600101611337565b6001600160a01b038416815260606020820181905283516113bf918301906001600160a01b03169052565b5f60208401516113da60808401826001600160a01b03169052565b5060408401516001600160a01b03811660a08401525060608401516001600160a01b03811660c084015250608084015160e083015260a084015161010083015260c084015161012083015260e084015161014083015261010084015161144c6101608401826001600160a01b03169052565b5061012084015161014061018084015261146a6101a0840182610efd565b90508281036040840152611017818561131b56fea164736f6c634300081c000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778

-----Decoded View---------------
Arg [0] : _swapRouter (address): 0x6352a56caadC4F1E25CD6c75970Fa768A3304e64
Arg [1] : _dataProvider (address): 0xDC515Cb479a64552c5A11a57109C314E40A1A778

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64
Arg [1] : 000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778


Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.