Source Code
Overview
ETH Balance
ETH Value
$0.00Latest 25 from a total of 689 transactions
| Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Swap | 15456439 | 257 days ago | IN | 0 ETH | 0.00002908 | ||||
| Swap | 15456043 | 257 days ago | IN | 0 ETH | 0.00002211 | ||||
| Swap | 15455772 | 257 days ago | IN | 0 ETH | 0.00002551 | ||||
| Swap | 15455153 | 257 days ago | IN | 0 ETH | 0.00003935 | ||||
| Swap | 15454916 | 257 days ago | IN | 0 ETH | 0.00003142 | ||||
| Swap | 15454455 | 257 days ago | IN | 0 ETH | 0.00002925 | ||||
| Swap | 15453500 | 257 days ago | IN | 0 ETH | 0.00002023 | ||||
| Swap | 15452053 | 258 days ago | IN | 0 ETH | 0.00001735 | ||||
| Swap | 15451981 | 258 days ago | IN | 0 ETH | 0.00002657 | ||||
| Swap | 15451944 | 258 days ago | IN | 0 ETH | 0.00002332 | ||||
| Swap | 15450986 | 258 days ago | IN | 0 ETH | 0.00002179 | ||||
| Swap | 15450738 | 258 days ago | IN | 0 ETH | 0.00002086 | ||||
| Swap | 15450484 | 258 days ago | IN | 0 ETH | 0.00002589 | ||||
| Swap | 15450445 | 258 days ago | IN | 0 ETH | 0.00001908 | ||||
| Swap | 15449988 | 258 days ago | IN | 0 ETH | 0.00004055 | ||||
| Swap | 15446478 | 258 days ago | IN | 0 ETH | 0.0000319 | ||||
| Swap | 15445932 | 258 days ago | IN | 0 ETH | 0.00002234 | ||||
| Swap | 15445250 | 258 days ago | IN | 0 ETH | 0.00002394 | ||||
| Swap | 15445008 | 258 days ago | IN | 0 ETH | 0.0000244 | ||||
| Swap | 15444737 | 258 days ago | IN | 0 ETH | 0.00002703 | ||||
| Swap | 15444717 | 258 days ago | IN | 0 ETH | 0.00001856 | ||||
| Swap | 15444567 | 258 days ago | IN | 0 ETH | 0.00003068 | ||||
| Swap | 15443692 | 258 days ago | IN | 0 ETH | 0.00001832 | ||||
| Swap | 15439907 | 258 days ago | IN | 0 ETH | 0.00003815 | ||||
| Swap | 15439139 | 258 days ago | IN | 0 ETH | 0.00001828 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
OpenOceanSwapModule
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {OpenOceanSwapDescription, IOpenOceanCaller, IOpenOceanRouter} from "../../interfaces/IOpenOcean.sol";
import { IEtherFiSafe } from "../../interfaces/IEtherFiSafe.sol";
import { ModuleBase } from "../ModuleBase.sol";
/**
* @title OpenOceanSwapModule
* @author ether.fi
* @notice Module for executing token swaps through OpenOcean exchange
* @dev Extends ModuleBase to integrate with the EtherFi ecosystem
*/
contract OpenOceanSwapModule is ModuleBase {
using MessageHashUtils for bytes32;
/// @notice OpenOcean router contract to give allowance to perform swaps
address public immutable swapRouter;
/// @notice TypeHash for swap function signature
bytes32 public constant SWAP_SIG = keccak256("swap");
/**
* @notice Emitted when a swap is executed on a Safe
* @param safe Address of the EtherFi safe to execute the swap from
* @param fromAsset Address of the token being sold (or ETH address for native swaps)
* @param toAsset Address of the token being purchased (or ETH address for native swaps)
* @param fromAssetAmount Amount of the source token to swap
* @param minToAssetAmount Min return amount
* @param returnAmt Final return amount
*/
event SwapOnOpenOcean(address indexed safe, address indexed fromAsset, address indexed toAsset, uint256 fromAssetAmount, uint256 minToAssetAmount, uint256 returnAmt);
/// @notice Thrown when trying to swap more tokens than available in the safe
error InsufficientBalanceOnSafe();
/// @notice Thrown when trying to swap a token for the same token
error SwappingToSameAsset();
/// @notice Thrown when swap returns less than the minimum expected amount
error OutputLessThanMinAmount();
/// @notice Error for Invalid Owner quorum signatures
error InvalidSignatures();
/**
* @notice Initializes the OpenOceanSwapModule
* @param _swapRouter Address of the OpenOcean swap router contract
* @param _dataProvider Address of the EtherFi data provider contract
*/
constructor(address _swapRouter, address _dataProvider) ModuleBase(_dataProvider) {
swapRouter = _swapRouter;
}
/**
* @notice Executes a token swap through OpenOcean
* @param safe Address of the EtherFi safe to execute the swap from
* @param fromAsset Address of the token being sold (or ETH address for native swaps)
* @param toAsset Address of the token being purchased (or ETH address for native swaps)
* @param fromAssetAmount Amount of the source token to swap
* @param minToAssetAmount Minimum amount of the destination token to receive
* @param guaranteedAmount Guaranteed amount as per OpenOcean's protocol
* @param data Additional data needed for the swap, encoded as (bytes4, address, CallDescription[])
* @param signers Addresses of the safe owners authorizing this swap
* @param signatures Signatures from the signers authorizing this transaction
* @dev Can only be called by an EtherFi safe, and requires signature from a safe admin
* @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough source tokens
* @custom:throws SwappingToSameAsset If trying to swap a token for itself
* @custom:throws OutputLessThanMinAmount If swap returns less than the specified minimum
*/
function swap(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data,
address[] calldata signers,
bytes[] calldata signatures
) external onlyEtherFiSafe(safe) {
_checkSignatures(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data, signers, signatures);
_swap(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
}
/**
* @notice Checks if the owner signatures are valid
* @param safe Address of the EtherFi safe to execute the swap from
* @param fromAsset Address of the token being sold (or ETH address for native swaps)
* @param toAsset Address of the token being purchased (or ETH address for native swaps)
* @param fromAssetAmount Amount of the source token to swap
* @param minToAssetAmount Minimum amount of the destination token to receive
* @param guaranteedAmount Guaranteed amount as per OpenOcean's protocol
* @param data Additional data needed for the swap, encoded as (bytes4, address, CallDescription[])
* @param signers Addresses of the safe owners authorizing this swap
* @param signatures Signatures from the signers authorizing this transaction
* @custom:throws InvalidSignatures if the signatures are invalid
*/
function _checkSignatures(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data,
address[] calldata signers,
bytes[] calldata signatures
) internal {
bytes32 digestHash = _createDigest(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
if (!IEtherFiSafe(safe).checkSignatures(digestHash, signers, signatures)) revert InvalidSignatures();
}
/**
* @notice Creates a digest hash for signature verification
* @param safe Address of the EtherFi safe
* @param fromAsset Address of the source token
* @param toAsset Address of the destination token
* @param fromAssetAmount Amount of the source token
* @param minToAssetAmount Minimum expected amount of destination token
* @param guaranteedAmount Guaranteed amount as per OpenOcean
* @param data Additional swap data
* @return Digest hash for signature verification
*/
function _createDigest(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data
) internal returns(bytes32) {
return keccak256(abi.encodePacked(
SWAP_SIG,
block.chainid,
address(this),
IEtherFiSafe(safe).useNonce(),
safe,
abi.encode(fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data)
)).toEthSignedMessageHash();
}
/**
* @notice Internal function to execute the token swap
* @param safe Address of the EtherFi safe
* @param fromAsset Address of the source token
* @param toAsset Address of the destination token
* @param fromAssetAmount Amount of the source token
* @param minToAssetAmount Minimum expected amount of destination token
* @param guaranteedAmount Guaranteed amount as per OpenOcean
* @param data Additional swap data
* @dev Handles the core swap logic and verification of received amounts
* @custom:throws SwappingToSameAsset If trying to swap a token for itself
* @custom:throws InvalidInput If minimum expected amount is 0
* @custom:throws OutputLessThanMinAmount If swap returns less than expected
*/
function _swap(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data
) internal {
if (fromAsset == toAsset) revert SwappingToSameAsset();
if (minToAssetAmount == 0) revert InvalidInput();
uint256 balBefore;
if (toAsset == ETH) balBefore = address(safe).balance;
else balBefore = IERC20(toAsset).balanceOf(safe);
address[] memory to;
uint256[] memory value;
bytes[] memory callData;
if (fromAsset == ETH) (to, value, callData) = _swapNative(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
else (to, value, callData) = _swapERC20(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
IEtherFiSafe(safe).execTransactionFromModule(to, value, callData);
uint256 balAfter;
if (toAsset == ETH) balAfter = address(safe).balance;
else balAfter = IERC20(toAsset).balanceOf(safe);
uint256 receivedAmt = balAfter - balBefore;
if (receivedAmt < minToAssetAmount) revert OutputLessThanMinAmount();
emit SwapOnOpenOcean(safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, receivedAmt);
}
/**
* @notice Prepares an ERC20 token swap transaction
* @param safe Address of the EtherFi safe
* @param fromAsset Address of the source ERC20 token
* @param toAsset Address of the destination token
* @param fromAssetAmount Amount of the source token
* @param minToAssetAmount Minimum expected amount of destination token
* @param guaranteedAmount Guaranteed amount as per OpenOcean
* @param data Additional swap data
* @return to Array of target addresses for transactions
* @return value Array of ETH values for transactions
* @return callData Array of calldata for transactions
* @dev Creates both the approval and swap transactions
* @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough tokens
*/
function _swapERC20(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data
) internal view returns (address[] memory to, uint256[] memory value, bytes[] memory callData) {
if (IERC20(fromAsset).balanceOf(safe) < fromAssetAmount) revert InsufficientBalanceOnSafe();
to = new address[](2);
value = new uint256[](2);
callData = new bytes[](2);
to[0] = fromAsset;
callData[0] = abi.encodeWithSelector(IERC20.approve.selector, swapRouter, fromAssetAmount);
to[1] = swapRouter;
callData[1] = _getSwapData(false, safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
}
/**
* @notice Prepares a native ETH swap transaction
* @param safe Address of the EtherFi safe
* @param fromAsset Address representing ETH (should be ETH address constant)
* @param toAsset Address of the destination token
* @param fromAssetAmount Amount of ETH to swap
* @param minToAssetAmount Minimum expected amount of destination token
* @param guaranteedAmount Guaranteed amount as per OpenOcean
* @param data Additional swap data
* @return to Array of target addresses for transactions
* @return value Array of ETH values for transactions
* @return callData Array of calldata for transactions
* @dev Creates the swap transaction with ETH value
* @custom:throws InsufficientBalanceOnSafe If safe doesn't have enough ETH
*/
function _swapNative(
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data
) internal view returns (address[] memory to, uint256[] memory value, bytes[] memory callData) {
if (address(safe).balance < fromAssetAmount) revert InsufficientBalanceOnSafe();
to = new address[](1);
value = new uint256[](1);
callData = new bytes[](1);
to[0] = swapRouter;
value[0] = fromAssetAmount;
callData[0] = _getSwapData(true, safe, fromAsset, toAsset, fromAssetAmount, minToAssetAmount, guaranteedAmount, data);
}
/**
* @notice Generates the OpenOcean swap function call data
* @param isNative Whether the swap involves native ETH
* @param safe Address of the EtherFi safe
* @param fromAsset Address of the source token
* @param toAsset Address of the destination token
* @param fromAssetAmount Amount of the source token
* @param minToAssetAmount Minimum expected amount of destination token
* @param guaranteedAmount Guaranteed amount as per OpenOcean
* @param data Additional swap data
* @return Encoded calldata for the OpenOcean swap function
* @dev Decodes the provided data and constructs the OpenOcean swap description
*/
function _getSwapData(
bool isNative,
address safe,
address fromAsset,
address toAsset,
uint256 fromAssetAmount,
uint256 minToAssetAmount,
uint256 guaranteedAmount,
bytes calldata data
) internal pure returns (bytes memory) {
( , address executor, IOpenOceanCaller.CallDescription[] memory calls) = abi.decode(data, (bytes4, address, IOpenOceanCaller.CallDescription[]));
OpenOceanSwapDescription memory swapDesc = OpenOceanSwapDescription({
srcToken: IERC20(fromAsset),
dstToken: IERC20(toAsset),
srcReceiver: payable(executor),
dstReceiver: payable(safe),
amount: fromAssetAmount,
minReturnAmount: minToAssetAmount,
guaranteedAmount: guaranteedAmount,
flags: isNative ? 0 : 2,
referrer: safe,
permit: hex""
});
return abi.encodeWithSelector(IOpenOceanRouter.swap.selector, IOpenOceanCaller(executor), swapDesc, calls);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
struct OpenOceanSwapDescription {
IERC20 srcToken;
IERC20 dstToken;
address srcReceiver;
address dstReceiver;
uint256 amount;
uint256 minReturnAmount;
uint256 guaranteedAmount;
uint256 flags;
address referrer;
bytes permit;
}
/// @title Interface for making arbitrary calls during swap
interface IOpenOceanCaller {
struct CallDescription {
uint256 target;
uint256 gasLimit;
uint256 value;
bytes data;
}
function makeCall(CallDescription memory desc) external;
function makeCalls(CallDescription[] memory desc) external payable;
}
interface IOpenOceanRouter {
/// @notice Performs a swap, delegating all calls encoded in `data` to `executor`.
function swap(
IOpenOceanCaller caller,
OpenOceanSwapDescription calldata desc,
IOpenOceanCaller.CallDescription[] calldata calls
) external returns (uint256 returnAmount);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface IEtherFiSafe {
/**
* @notice Verifies signatures against a digest hash until reaching the required threshold
* @param digestHash The hash of the data that was signed
* @param signers Array of addresses that supposedly signed the message
* @param signatures Array of signatures corresponding to the signers
* @return bool True if enough valid signatures are found to meet the threshold
* @dev Processes signatures until threshold is met. Invalid signatures are skipped.
* @custom:throws EmptySigners If the signers array is empty
* @custom:throws ArrayLengthMismatch If the lengths of signers and signatures arrays do not match
* @custom:throws InsufficientSigners If the length of signers array is less than the required threshold
* @custom:throws DuplicateElementFound If the signers array contains duplicate addresses
* @custom:throws InvalidSigner If a signer is the zero address or not an owner of the safe
*/
function checkSignatures(bytes32 digestHash, address[] calldata signers, bytes[] calldata signatures) external view returns (bool);
/**
* @notice Executes a transaction from an authorized module
* @dev Allows modules to execute arbitrary transactions on behalf of the safe
* @param to Array of target addresses for the calls
* @param values Array of ETH values to send with each call
* @param data Array of calldata for each call
* @custom:throws OnlyModules If the caller is not an enabled module
* @custom:throws CallFailed If any of the calls fail
*/
function execTransactionFromModule(address[] calldata to, uint256[] calldata values, bytes[] calldata data) external;
/**
* @notice Gets the current nonce value
* @dev Used for replay protection in signatures
* @return Current nonce value
*/
function nonce() external view returns (uint256);
/**
* @notice Returns all current owners of the safe
* @dev Implementation of the abstract function from ModuleManager
* @return address[] Array containing all owner addresses
*/
function getOwners() external view returns (address[] memory);
/**
* @notice Uses a nonce for operations in modules which require a quorum of owners
* @dev Can only be called by enabled modules
* @return uint256 The current nonce value before incrementing
* @custom:throws OnlyModules If the caller is not an enabled module
*/
function useNonce() external returns (uint256);
function isAdmin(address account) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import { IEtherFiDataProvider } from "../interfaces/IEtherFiDataProvider.sol";
import { IEtherFiSafe } from "../interfaces/IEtherFiSafe.sol";
import { SignatureUtils } from "../libraries/SignatureUtils.sol";
import { Constants } from "../utils/Constants.sol";
/**
* @title ModuleBase
* @author ether.fi
* @notice Base contract for implementing modules with admin functionality
* @dev Provides common functionality for modules including admin management and signature verification
* Uses ERC-7201 for namespace storage pattern
*/
contract ModuleBase is Constants {
using SignatureUtils for bytes32;
IEtherFiDataProvider public immutable etherFiDataProvider;
/// @notice Throws when the msg.sender is not an admin to the safe
error OnlySafeAdmin();
/// @notice Thrown when the input is invalid
error InvalidInput();
/// @notice Thrown when the signature verification fails
error InvalidSignature();
/// @notice Thrown when there is an array length mismatch
error ArrayLengthMismatch();
/// @notice Thrown when the caller is not an EtherFi Safe
error OnlyEtherFiSafe();
/// @custom:storage-location erc7201:etherfi.storage.ModuleBaseStorage
struct ModuleBaseStorage {
/// @notice Mapping of Safe addresses to their nonces for replay protection
mapping(address safe => uint256 nonce) nonces;
}
// keccak256(abi.encode(uint256(keccak256("etherfi.storage.ModuleBaseStorage")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ModuleBaseStorageLocation = 0x9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00;
constructor(address _etherFiDataProvider) {
if (_etherFiDataProvider == address(0)) revert InvalidInput();
etherFiDataProvider = IEtherFiDataProvider(_etherFiDataProvider);
}
/**
* @dev Returns the storage struct from the specified storage slot
* @return $ Reference to the ModuleBaseStorage struct
*/
function _getModuleBaseStorage() internal pure returns (ModuleBaseStorage storage $) {
assembly {
$.slot := ModuleBaseStorageLocation
}
}
/**
* @notice Returns the current nonce for a Safe
* @param safe The Safe address to query
* @return Current nonce value
* @dev Nonces are used to prevent signature replay attacks
*/
function getNonce(address safe) public view returns (uint256) {
return _getModuleBaseStorage().nonces[safe];
}
/**
* @dev Uses and increments the nonce for a Safe
* @param safe The Safe address
* @return The nonce value before incrementing
*/
function _useNonce(address safe) internal returns (uint256) {
ModuleBaseStorage storage $ = _getModuleBaseStorage();
unchecked {
return $.nonces[safe]++;
}
}
/**
* @dev Verifies if a signature is valid and made by an admin of the safe
* @param digestHash The message hash that was signed
* @param signer The address that supposedly signed the message
* @param signature The signature to verify
* @custom:throws SignerIsNotAnAdmin If the signer is not an admin of the Safe
* @custom:throws InvalidSignature If the signature is invalid
*/
function _verifyAdminSig(bytes32 digestHash, address signer, bytes calldata signature) internal view {
if (!digestHash.isValidSignature(signer, signature)) revert InvalidSignature();
}
/**
* @dev Ensures that the caller is an admin for the specified Safe
* @param safe The Safe address to check admin status for
*/
modifier onlySafeAdmin(address safe, address account) {
if (!IEtherFiSafe(safe).isAdmin(account)) revert OnlySafeAdmin();
_;
}
/**
* @dev Ensures that the account is an instance of the deployed EtherfiSafe
* @param account The account address to check
*/
modifier onlyEtherFiSafe(address account) {
if (!etherFiDataProvider.isEtherFiSafe(account)) revert OnlyEtherFiSafe();
_;
}
/**
* @notice Sets up a new Safe's Module with initial configuration
* @dev Override this function to configure a module initially
* @param data The encoded initialization data
*/
function setupModule(bytes calldata data) external virtual { }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import { IRoleRegistry } from "./IRoleRegistry.sol";
/**
* @title IEtherFiDataProvider
* @author ether.fi
* @notice Interface for the EtherFiDataProvider contract that manages important data for ether.fi
*/
interface IEtherFiDataProvider {
/**
* @notice Configures multiple modules' whitelist status
* @dev Only callable by addresses with ADMIN_ROLE
* @param modules Array of module addresses to configure
* @param shouldWhitelist Array of boolean values indicating whether each module should be whitelisted
*/
function configureModules(address[] calldata modules, bool[] calldata shouldWhitelist) external;
/**
* @notice Updates the hook address
* @dev Only callable by addresses with ADMIN_ROLE
* @param hook New hook address to set
*/
function setHookAddress(address hook) external;
/**
* @notice Updates the address of the Cash Module
* @dev Only callable by addresses with ADMIN_ROLE
* @param cashModule New cash module address to set
*/
function setCashModule(address cashModule) external;
/**
* @notice Checks if a module address is whitelisted
* @param module Address to check
* @return bool True if the module is whitelisted, false otherwise
*/
function isWhitelistedModule(address module) external view returns (bool);
/**
* @notice Checks if a module address is a whitelisted default module
* @param module Address to check
* @return bool True if the module is a whitelisted default module, false otherwise
*/
function isDefaultModule(address module) external view returns (bool);
/**
* @notice Retrieves all whitelisted module addresses
* @return address[] Array of whitelisted module addresses
*/
function getWhitelistedModules() external view returns (address[] memory);
/**
* @notice Returns the address of the Cash Module
* @return Address of the cash module
*/
function getCashModule() external view returns (address);
/**
* @notice Returns the address of the EtherFi Recovery signer
* @return Address of the EtherFi Recovery Signer
*/
function getEtherFiRecoverySigner() external view returns (address);
/**
* @notice Returns the address of the Third Party Recovery signer
* @return Address of the Third Party Recovery Signer
*/
function getThirdPartyRecoverySigner() external view returns (address);
/**
* @notice Returns the Recovery delay period in seconds
* @return Recovery delay period in seconds
*/
function getRecoveryDelayPeriod() external view returns (uint256);
/**
* @notice Returns the address of the Cash Lens contract
* @return Address of the Cash Lens contract
*/
function getCashLens() external view returns (address);
/**
* @notice Returns the address of the Price provider contract
* @return Address of the Price provider contract
*/
function getPriceProvider() external view returns (address);
/**
* @notice Returns the current hook address
* @return address Current hook address
*/
function getHookAddress() external view returns (address);
function getEtherFiSafeFactory() external view returns (address);
/**
* @notice Function to check if an account is an EtherFiSafe
* @param account Address of the account to check
*/
function isEtherFiSafe(address account) external view returns (bool);
/**
* @notice Role identifier for administrative privileges
* @return bytes32 The keccak256 hash of "ADMIN_ROLE"
*/
function ADMIN_ROLE() external view returns (bytes32);
/**
* @notice Returns the address of the Role Registry contract
* @return roleRegistry Reference to the role registry contract
*/
function roleRegistry() external view returns (IRoleRegistry);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import { IERC1271 } from "@openzeppelin/contracts/interfaces/IERC1271.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
/**
* @title Library of utilities for making EIP1271-compliant signature checks
* @author ether.fi
* @notice Provides functions to verify signatures from both EOAs and smart contracts implementing EIP-1271
* @dev Implements signature verification following EIP-1271 standard for smart contracts
* and standard ECDSA verification for EOAs
*/
library SignatureUtils {
// bytes4(keccak256("isValidSignature(bytes32,bytes)")
bytes4 internal constant EIP1271_MAGICVALUE = 0x1626ba7e;
/// @notice Thrown when an EOA signature is invalid
error InvalidSigner();
/// @notice Thrown when an ERC1271 contract signature verification fails
error InvalidERC1271Signer();
/**
* @notice Verifies if a signature is valid according to EIP-1271 standards
* @dev For EOAs, uses ECDSA recovery. For contracts, calls EIP-1271 isValidSignature
* @param digestHash The hash of the data that was signed
* @param signer The address that should have signed the data
* @param signature The signature bytes
* @custom:security Consider that contract signatures might have different gas costs
* @custom:warning The isContract check may return false positives during contract construction
* @custom:throws InvalidSigner If the EOA signature is invalid
* @custom:throws InvalidERC1271Signer If the contract signature verification fails
*/
function checkSignature(bytes32 digestHash, address signer, bytes memory signature) internal view {
if (isContract(signer)) {
if (IERC1271(signer).isValidSignature(digestHash, signature) != EIP1271_MAGICVALUE) revert InvalidERC1271Signer();
} else {
if (ECDSA.recover(digestHash, signature) != signer) revert InvalidSigner();
}
}
/**
* @notice Returns whether a signature is valid according to EIP-1271 standards
* @dev Similar to checkSignature_EIP1271 but returns boolean instead of reverting
* @param digestHash The hash of the data that was signed
* @param signer The address that should have signed the data
* @param signature The signature bytes
* @return bool True if the signature is valid, false otherwise
* @custom:warning The isContract check may return false positives during contract construction
*/
function isValidSignature(bytes32 digestHash, address signer, bytes memory signature) internal view returns (bool) {
if (isContract(signer)) {
return IERC1271(signer).isValidSignature(digestHash, signature) == EIP1271_MAGICVALUE;
} else {
return ECDSA.recover(digestHash, signature) == signer;
}
}
/**
* @notice Determines if an address is a contract
* @dev Uses assembly to check if the address has code
* @param account The address to check
* @return bool True if the address has code (is a contract), false otherwise
* @custom:warning This function returns false for contracts during their construction
*/
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly ("memory-safe") {
size := extcodesize(account)
}
return size > 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
/**
* @title Constants
* @author ether.fi
* @notice Contract that defines commonly used constants across the ether.fi protocol
* @dev This contract is not meant to be deployed but to be inherited by other contracts
*/
contract Constants {
/**
* @notice Special address used to represent native ETH in the protocol
* @dev This address is used as a marker since ETH is not an ERC20 token
*/
address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
/**
* @title IRoleRegistry
* @notice Interface for role-based access control management
* @dev Provides functions for managing and querying role assignments
*/
interface IRoleRegistry {
/**
* @notice Verifies if an account has pauser privileges
* @param account The address to check for pauser role
* @custom:throws Reverts if account is not an authorized pauser
*/
function onlyPauser(address account) external view;
/**
* @notice Verifies if an account has unpauser privileges
* @param account The address to check for unpauser role
* @custom:throws Reverts if account is not an authorized unpauser
*/
function onlyUnpauser(address account) external view;
/**
* @notice Checks if an account has any of the specified roles
* @dev Reverts if the account doesn't have at least one of the roles
* @param account The address to check roles for
* @param encodedRoles ABI encoded roles using abi.encode(ROLE_1, ROLE_2, ...)
* @custom:throws Reverts if account has none of the specified roles
*/
function checkRoles(address account, bytes memory encodedRoles) external view;
/**
* @notice Checks if an account has a specific role
* @dev Direct query for a single role status
* @param role The role identifier to check
* @param account The address to check the role for
* @return True if the account has the role, false otherwise
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @notice Grants a role to an account
* @dev Only callable by the contract owner
* @param role The role identifier to grant
* @param account The address to grant the role to
* @custom:access Restricted to contract owner
*/
function grantRole(bytes32 role, address account) external;
/**
* @notice Revokes a role from an account
* @dev Only callable by the contract owner
* @param role The role identifier to revoke
* @param account The address to revoke the role from
* @custom:access Restricted to contract owner
*/
function revokeRole(bytes32 role, address account) external;
/**
* @notice Retrieves all addresses that have a specific role
* @dev Wrapper around EnumerableRoles roleHolders function
* @param role The role identifier to query
* @return Array of addresses that have the specified role
*/
function roleHolders(bytes32 role) external view returns (address[] memory);
/**
* @notice Verifies if an account has upgrader privileges
* @dev Used for upgrade authorization checks
* @param account The address to check for upgrader role
* @custom:throws Reverts if account is not an authorized upgrader
*/
function onlyUpgrader(address account) external view;
/**
* @notice Returns the owner of the contract
* @return result Owner of the contract
*/
function owner() external view returns (address result);
/**
* @notice Generates a unique role identifier for safe administrators
* @dev Creates a unique bytes32 identifier by hashing the safe address with a role type
* @param safe The address of the safe for which to generate the admin role
* @return bytes32 A unique role identifier for the specified safe's admins
* @custom:throws InvalidInput if safe is a zero address
*/
function getSafeAdminRole(address safe) external pure returns (bytes32);
/**
* @notice Configures admin roles for a specific safe
* @dev Grants/revokes admin privileges to specified addresses for a particular safe
* @param accounts Array of admin addresses to configure
* @param shouldAdd Array indicating whether to add or remove each admin
* @custom:throws OnlyEtherFiSafe if called by any address other than a registered EtherFiSafe
* @custom:throws InvalidInput if the admins array is empty or contains a zero address
* @custom:throws ArrayLengthMismatch if the array lengths mismatch
*/
function configureSafeAdmins(address[] calldata accounts, bool[] calldata shouldAdd) external;
/**
* @notice Verifies if an account has safe admin privileges
* @param safe The address of the safe
* @param account The address to check for safe admin role
* @custom:throws OnlySafeAdmin if the account does not have the SafeAdmin role
*/
function onlySafeAdmin(address safe, address account) external view;
/**
* @notice Returns if an account has safe admin privileges
* @param safe The address of the safe
* @param account The address to check for safe admin role
* @return bool suggesting if the account has the safe admin role
*/
function isSafeAdmin(address safe, address account) external view returns (bool);
/**
* @notice Retrieves all addresses that have the safe admin role for a particular safe
* @param safe The address of the safe
* @return Array of addresses that have the safe admin role
*/
function getSafeAdmins(address safe) external view returns (address[] memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"solady/=lib/solady/src/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_swapRouter","type":"address"},{"internalType":"address","name":"_dataProvider","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"InsufficientBalanceOnSafe","type":"error"},{"inputs":[],"name":"InvalidInput","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidSignatures","type":"error"},{"inputs":[],"name":"OnlyEtherFiSafe","type":"error"},{"inputs":[],"name":"OnlySafeAdmin","type":"error"},{"inputs":[],"name":"OutputLessThanMinAmount","type":"error"},{"inputs":[],"name":"SwappingToSameAsset","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"safe","type":"address"},{"indexed":true,"internalType":"address","name":"fromAsset","type":"address"},{"indexed":true,"internalType":"address","name":"toAsset","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAssetAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"minToAssetAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"returnAmt","type":"uint256"}],"name":"SwapOnOpenOcean","type":"event"},{"inputs":[],"name":"ETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SWAP_SIG","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"etherFiDataProvider","outputs":[{"internalType":"contract IEtherFiDataProvider","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"safe","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"setupModule","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"safe","type":"address"},{"internalType":"address","name":"fromAsset","type":"address"},{"internalType":"address","name":"toAsset","type":"address"},{"internalType":"uint256","name":"fromAssetAmount","type":"uint256"},{"internalType":"uint256","name":"minToAssetAmount","type":"uint256"},{"internalType":"uint256","name":"guaranteedAmount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"address[]","name":"signers","type":"address[]"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]Contract Creation Code
60c060405234801561000f575f5ffd5b5060405161158538038061158583398101604081905261002e9161008c565b806001600160a01b0381166100565760405163b4fa3fb360e01b815260040160405180910390fd5b6001600160a01b039081166080529190911660a052506100bd565b80516001600160a01b0381168114610087575f5ffd5b919050565b5f5f6040838503121561009d575f5ffd5b6100a683610071565b91506100b460208401610071565b90509250929050565b60805160a05161148b6100fa5f395f818161015e015281816107e2015281816109bf0152610a3601525f818161018501526101c8015261148b5ff3fe608060405234801561000f575f5ffd5b506004361061007a575f3560e01c80638322fff2116100585780638322fff214610114578063909030d514610147578063c31c9c0714610159578063f9fba81b14610180575f5ffd5b806305f1ccac1461007e5780632c541f7c146100935780632d0335ab146100cd575b5f5ffd5b61009161008c366004610c61565b6101a7565b005b6100ba7f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2981565b6040519081526020015b60405180910390f35b6100ba6100db366004610d52565b6001600160a01b03165f9081527f9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00602052604090205490565b61012f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b6040516001600160a01b0390911681526020016100c4565b610091610155366004610d74565b5050565b61012f7f000000000000000000000000000000000000000000000000000000000000000081565b61012f7f000000000000000000000000000000000000000000000000000000000000000081565b60405163b7ca418b60e01b81526001600160a01b03808e1660048301528d917f00000000000000000000000000000000000000000000000000000000000000009091169063b7ca418b90602401602060405180830381865afa15801561020f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102339190610db2565b610250576040516334d0b49960e01b815260040160405180910390fd5b6102648d8d8d8d8d8d8d8d8d8d8d8d610283565b6102748d8d8d8d8d8d8d8d610327565b50505050505050505050505050565b5f6102948d8d8d8d8d8d8d8d610627565b60405163a732422d60e01b81529091506001600160a01b038e169063a732422d906102cb9084908990899089908990600401610df9565b602060405180830381865afa1580156102e6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061030a9190610db2565b6102745760405163274cf40160e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03160361035957604051636b726f9b60e11b815260040160405180910390fd5b835f036103795760405163b4fa3fb360e01b815260040160405180910390fd5b5f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038816016103b057506001600160a01b0388163161041b565b6040516370a0823160e01b81526001600160a01b038a811660048301528816906370a0823190602401602060405180830381865afa1580156103f4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104189190610ee6565b90505b6060808073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038c1601610460576104548c8c8c8c8c8c8c8c610744565b91945092509050610478565b6104708c8c8c8c8c8c8c8c61088f565b919450925090505b604051632f378c5f60e21b81526001600160a01b038d169063bcde317c906104a890869086908690600401610f85565b5f604051808303815f87803b1580156104bf575f5ffd5b505af11580156104d1573d5f5f3e3d5ffd5b505050505f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee6001600160a01b03168b6001600160a01b03160361051457506001600160a01b038c163161057f565b6040516370a0823160e01b81526001600160a01b038e811660048301528c16906370a0823190602401602060405180830381865afa158015610558573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061057c9190610ee6565b90505b5f61058a8683611021565b9050898110156105ad576040516338c66f1160e21b815260040160405180910390fd5b8b6001600160a01b03168d6001600160a01b03168f6001600160a01b03167f2a82dfb47a9ce5b4d3c76dc499e939db2e5b219478977ba3637014724c0997438e8e8660405161060f939291909283526020830191909152604082015260600190565b60405180910390a45050505050505050505050505050565b5f6107377f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2946308c6001600160a01b03166369615a4c6040518163ffffffff1660e01b81526004016020604051808303815f875af115801561068b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106af9190610ee6565b8d8d8d8d8d8d8d8d6040516020016106cd9796959493929190611046565b60408051601f19818403018152908290526106ef969594939291602001611087565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b9998505050505050505050565b6060806060878b6001600160a01b0316311015610774576040516308b4578f60e01b815260040160405180910390fd5b6040805160018082528183019092529060208083019080368337505060408051600180825281830190925292955090506020808301908036833701905050604080516001808252818301909252919350816020015b60608152602001906001900390816107c95790505090507f0000000000000000000000000000000000000000000000000000000000000000835f81518110610813576108136110fb565b60200260200101906001600160a01b031690816001600160a01b03168152505087825f81518110610846576108466110fb565b60200260200101818152505061086460018c8c8c8c8c8c8c8c610aac565b815f81518110610876576108766110fb565b6020026020010181905250985098509895505050505050565b6040516370a0823160e01b81526001600160a01b0389811660048301526060918291829189918c16906370a0823190602401602060405180830381865afa1580156108dc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109009190610ee6565b101561091f576040516308b4578f60e01b815260040160405180910390fd5b604080516002808252606082018352909160208301908036833750506040805160028082526060820183529396509291506020830190803683370190505060408051600280825260608201909252919350816020015b606081526020019060019003908161097557905050905089835f8151811061099f5761099f6110fb565b6001600160a01b03928316602091820292909201810191909152604080517f0000000000000000000000000000000000000000000000000000000000000000909316602484015260448084018c90528151808503909101815260649093019052810180516001600160e01b031663095ea7b360e01b179052815182905f90610a2957610a296110fb565b60200260200101819052507f000000000000000000000000000000000000000000000000000000000000000083600181518110610a6857610a686110fb565b60200260200101906001600160a01b031690816001600160a01b031681525050610a995f8c8c8c8c8c8c8c8c610aac565b81600181518110610876576108766110fb565b60605f80610abc84860186611167565b92509250505f6040518061014001604052808c6001600160a01b031681526020018b6001600160a01b03168152602001846001600160a01b031681526020018d6001600160a01b031681526020018a81526020018981526020018881526020018e610b28576002610b2a565b5f5b60ff1681526020018d6001600160a01b0316815260200160405180602001604052805f81525081525090506390411a3260e01b838284604051602401610b7293929190611394565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915293505050509998505050505050505050565b6001600160a01b0381168114610bca575f5ffd5b50565b8035610bd881610bb6565b919050565b5f5f83601f840112610bed575f5ffd5b5081356001600160401b03811115610c03575f5ffd5b602083019150836020828501011115610c1a575f5ffd5b9250929050565b5f5f83601f840112610c31575f5ffd5b5081356001600160401b03811115610c47575f5ffd5b6020830191508360208260051b8501011115610c1a575f5ffd5b5f5f5f5f5f5f5f5f5f5f5f5f6101208d8f031215610c7d575f5ffd5b610c868d610bcd565b9b50610c9460208e01610bcd565b9a50610ca260408e01610bcd565b995060608d0135985060808d0135975060a08d013596506001600160401b0360c08e01351115610cd0575f5ffd5b610ce08e60c08f01358f01610bdd565b90965094506001600160401b0360e08e01351115610cfc575f5ffd5b610d0c8e60e08f01358f01610c21565b90945092506001600160401b036101008e01351115610d29575f5ffd5b610d3a8e6101008f01358f01610c21565b81935080925050509295989b509295989b509295989b565b5f60208284031215610d62575f5ffd5b8135610d6d81610bb6565b9392505050565b5f5f60208385031215610d85575f5ffd5b82356001600160401b03811115610d9a575f5ffd5b610da685828601610bdd565b90969095509350505050565b5f60208284031215610dc2575f5ffd5b81518015158114610d6d575f5ffd5b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b85815260606020820181905281018490525f8560808301825b87811015610e42578235610e2581610bb6565b6001600160a01b0316825260209283019290910190600101610e12565b50838103604085015284815260208082019250600586901b820101865f36829003601e19015b88821015610ed557848403601f190186528235818112610e86575f5ffd5b8a016020810190356001600160401b03811115610ea1575f5ffd5b803603821315610eaf575f5ffd5b610eba868284610dd1565b95505050602083019250602086019550600182019150610e68565b50919b9a5050505050505050505050565b5f60208284031215610ef6575f5ffd5b5051919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f19858403018852610f63838351610efd565b6020988901989093509190910190600101610f47565b50909695505050505050565b606080825284519082018190525f9060208601906080840190835b81811015610fc75783516001600160a01b0316835260209384019390920191600101610fa0565b5050838103602080860191909152865180835291810192508601905f5b81811015611002578251845260209384019390920191600101610fe4565b50505082810360408401526110178185610f2b565b9695505050505050565b8181038181111561104057634e487b7160e01b5f52601160045260245ffd5b92915050565b6001600160a01b0388811682528716602082015260408101869052606081018590526080810184905260c060a082018190525f906107379083018486610dd1565b8681528560208201526bffffffffffffffffffffffff198560601b1660408201528360548201526bffffffffffffffffffffffff198360601b1660748201525f82518060208501608885015e5f9201608801918252509695505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b604051608081016001600160401b0381118282101715611131576111316110e7565b60405290565b604051601f8201601f191681016001600160401b038111828210171561115f5761115f6110e7565b604052919050565b5f5f5f60608486031215611179575f5ffd5b83356001600160e01b031981168114611190575f5ffd5b925060208401356111a081610bb6565b915060408401356001600160401b038111156111ba575f5ffd5b8401601f810186136111ca575f5ffd5b80356001600160401b038111156111e3576111e36110e7565b8060051b6111f360208201611137565b9182526020818401810192908101908984111561120e575f5ffd5b6020850192505b8383101561130c5782356001600160401b03811115611232575f5ffd5b85016080818c03601f19011215611247575f5ffd5b61124f61110f565b60208281013582526040808401359183019190915260608301359082015260808201356001600160401b03811115611285575f5ffd5b6020818401019250508b601f83011261129c575f5ffd5b81356001600160401b038111156112b5576112b56110e7565b6112c8601f8201601f1916602001611137565b8181528d60208386010111156112dc575f5ffd5b816020850160208301375f6020838301015280606084015250508084525050602082019150602083019250611215565b80955050505050509250925092565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f198584030188528151805184526020810151602085015260408101516040850152606081015190506080606085015261137d6080850182610efd565b6020998a0199909450929092019150600101611337565b6001600160a01b038416815260606020820181905283516113bf918301906001600160a01b03169052565b5f60208401516113da60808401826001600160a01b03169052565b5060408401516001600160a01b03811660a08401525060608401516001600160a01b03811660c084015250608084015160e083015260a084015161010083015260c084015161012083015260e084015161014083015261010084015161144c6101608401826001600160a01b03169052565b5061012084015161014061018084015261146a6101a0840182610efd565b90508281036040840152611017818561131b56fea164736f6c634300081c000a0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778
Deployed Bytecode
0x608060405234801561000f575f5ffd5b506004361061007a575f3560e01c80638322fff2116100585780638322fff214610114578063909030d514610147578063c31c9c0714610159578063f9fba81b14610180575f5ffd5b806305f1ccac1461007e5780632c541f7c146100935780632d0335ab146100cd575b5f5ffd5b61009161008c366004610c61565b6101a7565b005b6100ba7f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2981565b6040519081526020015b60405180910390f35b6100ba6100db366004610d52565b6001600160a01b03165f9081527f9425b2e03e09da4c20ff7a465da264f7a02bf7079e1dbb47fce0436e1d206d00602052604090205490565b61012f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b6040516001600160a01b0390911681526020016100c4565b610091610155366004610d74565b5050565b61012f7f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e6481565b61012f7f000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a77881565b60405163b7ca418b60e01b81526001600160a01b03808e1660048301528d917f000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a7789091169063b7ca418b90602401602060405180830381865afa15801561020f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102339190610db2565b610250576040516334d0b49960e01b815260040160405180910390fd5b6102648d8d8d8d8d8d8d8d8d8d8d8d610283565b6102748d8d8d8d8d8d8d8d610327565b50505050505050505050505050565b5f6102948d8d8d8d8d8d8d8d610627565b60405163a732422d60e01b81529091506001600160a01b038e169063a732422d906102cb9084908990899089908990600401610df9565b602060405180830381865afa1580156102e6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061030a9190610db2565b6102745760405163274cf40160e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03160361035957604051636b726f9b60e11b815260040160405180910390fd5b835f036103795760405163b4fa3fb360e01b815260040160405180910390fd5b5f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038816016103b057506001600160a01b0388163161041b565b6040516370a0823160e01b81526001600160a01b038a811660048301528816906370a0823190602401602060405180830381865afa1580156103f4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104189190610ee6565b90505b6060808073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b038c1601610460576104548c8c8c8c8c8c8c8c610744565b91945092509050610478565b6104708c8c8c8c8c8c8c8c61088f565b919450925090505b604051632f378c5f60e21b81526001600160a01b038d169063bcde317c906104a890869086908690600401610f85565b5f604051808303815f87803b1580156104bf575f5ffd5b505af11580156104d1573d5f5f3e3d5ffd5b505050505f73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee6001600160a01b03168b6001600160a01b03160361051457506001600160a01b038c163161057f565b6040516370a0823160e01b81526001600160a01b038e811660048301528c16906370a0823190602401602060405180830381865afa158015610558573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061057c9190610ee6565b90505b5f61058a8683611021565b9050898110156105ad576040516338c66f1160e21b815260040160405180910390fd5b8b6001600160a01b03168d6001600160a01b03168f6001600160a01b03167f2a82dfb47a9ce5b4d3c76dc499e939db2e5b219478977ba3637014724c0997438e8e8660405161060f939291909283526020830191909152604082015260600190565b60405180910390a45050505050505050505050505050565b5f6107377f695543c3708653cda9d418b4ccd3be11368e40636c10c44b18cfe756b6d88b2946308c6001600160a01b03166369615a4c6040518163ffffffff1660e01b81526004016020604051808303815f875af115801561068b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106af9190610ee6565b8d8d8d8d8d8d8d8d6040516020016106cd9796959493929190611046565b60408051601f19818403018152908290526106ef969594939291602001611087565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b9998505050505050505050565b6060806060878b6001600160a01b0316311015610774576040516308b4578f60e01b815260040160405180910390fd5b6040805160018082528183019092529060208083019080368337505060408051600180825281830190925292955090506020808301908036833701905050604080516001808252818301909252919350816020015b60608152602001906001900390816107c95790505090507f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64835f81518110610813576108136110fb565b60200260200101906001600160a01b031690816001600160a01b03168152505087825f81518110610846576108466110fb565b60200260200101818152505061086460018c8c8c8c8c8c8c8c610aac565b815f81518110610876576108766110fb565b6020026020010181905250985098509895505050505050565b6040516370a0823160e01b81526001600160a01b0389811660048301526060918291829189918c16906370a0823190602401602060405180830381865afa1580156108dc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109009190610ee6565b101561091f576040516308b4578f60e01b815260040160405180910390fd5b604080516002808252606082018352909160208301908036833750506040805160028082526060820183529396509291506020830190803683370190505060408051600280825260608201909252919350816020015b606081526020019060019003908161097557905050905089835f8151811061099f5761099f6110fb565b6001600160a01b03928316602091820292909201810191909152604080517f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64909316602484015260448084018c90528151808503909101815260649093019052810180516001600160e01b031663095ea7b360e01b179052815182905f90610a2957610a296110fb565b60200260200101819052507f0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e6483600181518110610a6857610a686110fb565b60200260200101906001600160a01b031690816001600160a01b031681525050610a995f8c8c8c8c8c8c8c8c610aac565b81600181518110610876576108766110fb565b60605f80610abc84860186611167565b92509250505f6040518061014001604052808c6001600160a01b031681526020018b6001600160a01b03168152602001846001600160a01b031681526020018d6001600160a01b031681526020018a81526020018981526020018881526020018e610b28576002610b2a565b5f5b60ff1681526020018d6001600160a01b0316815260200160405180602001604052805f81525081525090506390411a3260e01b838284604051602401610b7293929190611394565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915293505050509998505050505050505050565b6001600160a01b0381168114610bca575f5ffd5b50565b8035610bd881610bb6565b919050565b5f5f83601f840112610bed575f5ffd5b5081356001600160401b03811115610c03575f5ffd5b602083019150836020828501011115610c1a575f5ffd5b9250929050565b5f5f83601f840112610c31575f5ffd5b5081356001600160401b03811115610c47575f5ffd5b6020830191508360208260051b8501011115610c1a575f5ffd5b5f5f5f5f5f5f5f5f5f5f5f5f6101208d8f031215610c7d575f5ffd5b610c868d610bcd565b9b50610c9460208e01610bcd565b9a50610ca260408e01610bcd565b995060608d0135985060808d0135975060a08d013596506001600160401b0360c08e01351115610cd0575f5ffd5b610ce08e60c08f01358f01610bdd565b90965094506001600160401b0360e08e01351115610cfc575f5ffd5b610d0c8e60e08f01358f01610c21565b90945092506001600160401b036101008e01351115610d29575f5ffd5b610d3a8e6101008f01358f01610c21565b81935080925050509295989b509295989b509295989b565b5f60208284031215610d62575f5ffd5b8135610d6d81610bb6565b9392505050565b5f5f60208385031215610d85575f5ffd5b82356001600160401b03811115610d9a575f5ffd5b610da685828601610bdd565b90969095509350505050565b5f60208284031215610dc2575f5ffd5b81518015158114610d6d575f5ffd5b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b85815260606020820181905281018490525f8560808301825b87811015610e42578235610e2581610bb6565b6001600160a01b0316825260209283019290910190600101610e12565b50838103604085015284815260208082019250600586901b820101865f36829003601e19015b88821015610ed557848403601f190186528235818112610e86575f5ffd5b8a016020810190356001600160401b03811115610ea1575f5ffd5b803603821315610eaf575f5ffd5b610eba868284610dd1565b95505050602083019250602086019550600182019150610e68565b50919b9a5050505050505050505050565b5f60208284031215610ef6575f5ffd5b5051919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f19858403018852610f63838351610efd565b6020988901989093509190910190600101610f47565b50909695505050505050565b606080825284519082018190525f9060208601906080840190835b81811015610fc75783516001600160a01b0316835260209384019390920191600101610fa0565b5050838103602080860191909152865180835291810192508601905f5b81811015611002578251845260209384019390920191600101610fe4565b50505082810360408401526110178185610f2b565b9695505050505050565b8181038181111561104057634e487b7160e01b5f52601160045260245ffd5b92915050565b6001600160a01b0388811682528716602082015260408101869052606081018590526080810184905260c060a082018190525f906107379083018486610dd1565b8681528560208201526bffffffffffffffffffffffff198560601b1660408201528360548201526bffffffffffffffffffffffff198360601b1660748201525f82518060208501608885015e5f9201608801918252509695505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b604051608081016001600160401b0381118282101715611131576111316110e7565b60405290565b604051601f8201601f191681016001600160401b038111828210171561115f5761115f6110e7565b604052919050565b5f5f5f60608486031215611179575f5ffd5b83356001600160e01b031981168114611190575f5ffd5b925060208401356111a081610bb6565b915060408401356001600160401b038111156111ba575f5ffd5b8401601f810186136111ca575f5ffd5b80356001600160401b038111156111e3576111e36110e7565b8060051b6111f360208201611137565b9182526020818401810192908101908984111561120e575f5ffd5b6020850192505b8383101561130c5782356001600160401b03811115611232575f5ffd5b85016080818c03601f19011215611247575f5ffd5b61124f61110f565b60208281013582526040808401359183019190915260608301359082015260808201356001600160401b03811115611285575f5ffd5b6020818401019250508b601f83011261129c575f5ffd5b81356001600160401b038111156112b5576112b56110e7565b6112c8601f8201601f1916602001611137565b8181528d60208386010111156112dc575f5ffd5b816020850160208301375f6020838301015280606084015250508084525050602082019150602083019250611215565b80955050505050509250925092565b5f82825180855260208501945060208160051b830101602085015f5b83811015610f7957601f198584030188528151805184526020810151602085015260408101516040850152606081015190506080606085015261137d6080850182610efd565b6020998a0199909450929092019150600101611337565b6001600160a01b038416815260606020820181905283516113bf918301906001600160a01b03169052565b5f60208401516113da60808401826001600160a01b03169052565b5060408401516001600160a01b03811660a08401525060608401516001600160a01b03811660c084015250608084015160e083015260a084015161010083015260c084015161012083015260e084015161014083015261010084015161144c6101608401826001600160a01b03169052565b5061012084015161014061018084015261146a6101a0840182610efd565b90508281036040840152611017818561131b56fea164736f6c634300081c000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778
-----Decoded View---------------
Arg [0] : _swapRouter (address): 0x6352a56caadC4F1E25CD6c75970Fa768A3304e64
Arg [1] : _dataProvider (address): 0xDC515Cb479a64552c5A11a57109C314E40A1A778
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000006352a56caadc4f1e25cd6c75970fa768a3304e64
Arg [1] : 000000000000000000000000dc515cb479a64552c5a11a57109c314e40a1a778
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.