ETH Price: $2,063.50 (-1.63%)
 

Overview

ETH Balance

Scroll LogoScroll LogoScroll Logo0 ETH

ETH Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
0x2213bc0b142197082025-03-25 9:02:419 hrs ago1742893361IN
0x00000000...aE4b49562
0.000001 ETH0.000010640.0436381
0x2213bc0b142190442025-03-25 8:10:3210 hrs ago1742890232IN
0x00000000...aE4b49562
0.0000001 ETH0.000020620.08484337
0x2213bc0b142187332025-03-25 7:49:0411 hrs ago1742888944IN
0x00000000...aE4b49562
0.0000001 ETH0.000013970.05287591
0x2213bc0b142178662025-03-25 6:43:4212 hrs ago1742885022IN
0x00000000...aE4b49562
0.014 ETH0.000014270.04
0x2213bc0b142097532025-03-24 21:56:0321 hrs ago1742853363IN
0x00000000...aE4b49562
0 ETH0.000031910.0425
0x2213bc0b142097382025-03-24 21:55:1521 hrs ago1742853315IN
0x00000000...aE4b49562
0 ETH0.000029430.0425
0x2213bc0b142097282025-03-24 21:54:4521 hrs ago1742853285IN
0x00000000...aE4b49562
0 ETH0.000032530.0425
0x2213bc0b142097222025-03-24 21:54:2721 hrs ago1742853267IN
0x00000000...aE4b49562
0 ETH0.000039620.0425
0x2213bc0b142097152025-03-24 21:54:0621 hrs ago1742853246IN
0x00000000...aE4b49562
0 ETH0.000034570.0425
0x2213bc0b142097082025-03-24 21:53:4521 hrs ago1742853225IN
0x00000000...aE4b49562
0 ETH0.000034280.0425
0x2213bc0b142097002025-03-24 21:53:2121 hrs ago1742853201IN
0x00000000...aE4b49562
0 ETH0.000029330.0425
0x2213bc0b142096932025-03-24 21:53:0021 hrs ago1742853180IN
0x00000000...aE4b49562
0 ETH0.000061680.0425
0x2213bc0b142096842025-03-24 21:52:3321 hrs ago1742853153IN
0x00000000...aE4b49562
0 ETH0.000061850.0425
0x2213bc0b142096512025-03-24 21:50:5421 hrs ago1742853054IN
0x00000000...aE4b49562
0 ETH0.000125380.05
0x2213bc0b142096212025-03-24 21:49:1821 hrs ago1742852958IN
0x00000000...aE4b49562
0 ETH0.000153990.05
0x2213bc0b142096082025-03-24 21:48:3621 hrs ago1742852916IN
0x00000000...aE4b49562
0 ETH0.00005490.05
0x2213bc0b142096002025-03-24 21:48:1221 hrs ago1742852892IN
0x00000000...aE4b49562
0 ETH0.000098830.05
0x2213bc0b142095912025-03-24 21:47:4521 hrs ago1742852865IN
0x00000000...aE4b49562
0 ETH0.000120130.05
0x2213bc0b142095742025-03-24 21:46:4921 hrs ago1742852809IN
0x00000000...aE4b49562
0 ETH0.00007040.05
0x2213bc0b142095642025-03-24 21:46:1721 hrs ago1742852777IN
0x00000000...aE4b49562
0 ETH0.000016120.04
0x2213bc0b142095582025-03-24 21:45:5221 hrs ago1742852752IN
0x00000000...aE4b49562
0 ETH0.000023560.04
0x2213bc0b142095472025-03-24 21:45:0921 hrs ago1742852709IN
0x00000000...aE4b49562
0 ETH0.000021670.05
0x2213bc0b142095372025-03-24 21:44:2221 hrs ago1742852662IN
0x00000000...aE4b49562
0 ETH0.000048030.05
0x2213bc0b142095312025-03-24 21:44:0321 hrs ago1742852643IN
0x00000000...aE4b49562
0 ETH0.000029570.05
0x2213bc0b142094882025-03-24 21:41:2721 hrs ago1742852487IN
0x00000000...aE4b49562
0 ETH0.000019410.05
View all transactions

Latest 25 internal transactions (View All)

Parent Transaction Hash Block From To
142256692025-03-25 16:03:322 hrs ago1742918612
0x00000000...aE4b49562
0.0004615 ETH
142256692025-03-25 16:03:322 hrs ago1742918612
0x00000000...aE4b49562
0.0004615 ETH
142220262025-03-25 11:49:217 hrs ago1742903361
0x00000000...aE4b49562
1.19571494 ETH
142220262025-03-25 11:49:217 hrs ago1742903361
0x00000000...aE4b49562
1.19571494 ETH
142210022025-03-25 10:35:268 hrs ago1742898926
0x00000000...aE4b49562
0.00402 ETH
142210022025-03-25 10:35:268 hrs ago1742898926
0x00000000...aE4b49562
0.00402 ETH
142209362025-03-25 10:31:168 hrs ago1742898676
0x00000000...aE4b49562
0.00944676 ETH
142209362025-03-25 10:31:168 hrs ago1742898676
0x00000000...aE4b49562
0.00944676 ETH
142197082025-03-25 9:02:419 hrs ago1742893361
0x00000000...aE4b49562
0.000001 ETH
142190442025-03-25 8:10:3210 hrs ago1742890232
0x00000000...aE4b49562
0.0000001 ETH
142187332025-03-25 7:49:0411 hrs ago1742888944
0x00000000...aE4b49562
0.0000001 ETH
142178662025-03-25 6:43:4212 hrs ago1742885022
0x00000000...aE4b49562
0.014 ETH
142115942025-03-24 23:42:4319 hrs ago1742859763
0x00000000...aE4b49562
0.05441267 ETH
142115942025-03-24 23:42:4319 hrs ago1742859763
0x00000000...aE4b49562
0.05441267 ETH
142065122025-03-24 17:36:1925 hrs ago1742837779
0x00000000...aE4b49562
0.0575225 ETH
142065122025-03-24 17:36:1925 hrs ago1742837779
0x00000000...aE4b49562
0.0575225 ETH
142055602025-03-24 16:24:3226 hrs ago1742833472
0x00000000...aE4b49562
0.0345 ETH
142048862025-03-24 15:31:3527 hrs ago1742830295
0x00000000...aE4b49562
2 ETH
142048862025-03-24 15:31:3527 hrs ago1742830295
0x00000000...aE4b49562
2 ETH
142025472025-03-24 12:37:0730 hrs ago1742819827
0x00000000...aE4b49562
0.0001 ETH
142013282025-03-24 11:02:5531 hrs ago1742814175
0x00000000...aE4b49562
0.26466544 ETH
142013282025-03-24 11:02:5531 hrs ago1742814175
0x00000000...aE4b49562
0.26466544 ETH
141977832025-03-24 7:32:4035 hrs ago1742801560
0x00000000...aE4b49562
0.0005 ETH
141977832025-03-24 7:32:4035 hrs ago1742801560
0x00000000...aE4b49562
0.0005 ETH
141977192025-03-24 7:28:3035 hrs ago1742801310
0x00000000...aE4b49562
0.0011 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AllowanceHolder

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
london EvmVersion
File 1 of 10 : AllowanceHolderOld.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.25;

import {AllowanceHolderBase} from "./AllowanceHolderBase.sol";
import {TransientStorageMock} from "./TransientStorageMock.sol";

/// @custom:security-contact [email protected]
contract AllowanceHolder is TransientStorageMock, AllowanceHolderBase {
    /// @inheritdoc AllowanceHolderBase
    function exec(address operator, address token, uint256 amount, address payable target, bytes calldata data)
        internal
        override
        returns (bytes memory)
    {
        (bytes memory result,, TSlot allowance) = _exec(operator, token, amount, target, data);
        _set(allowance, 0);
        return result;
    }

    // This is here as a deploy-time check that AllowanceHolder doesn't have any
    // state. If it did, it would interfere with TransientStorageMock.
    bytes32 private _sentinel;

    constructor() {
        require(address(this) == 0x0000000000005E88410CcDFaDe4a5EfaE4b49562 || block.chainid == 31337);
        uint256 _sentinelSlot;
        assembly ("memory-safe") {
            _sentinelSlot := _sentinel.slot
        }
        assert(_sentinelSlot == 1);
    }
}

File 2 of 10 : AllowanceHolderBase.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {IAllowanceHolder} from "./IAllowanceHolder.sol";
import {IERC20} from "../IERC20.sol";
import {SafeTransferLib} from "../vendor/SafeTransferLib.sol";
import {CheckCall} from "../utils/CheckCall.sol";
import {FreeMemory} from "../utils/FreeMemory.sol";
import {TransientStorageLayout} from "./TransientStorageLayout.sol";

/// @notice Thrown when validating the target, avoiding executing against an ERC20 directly
error ConfusedDeputy();

abstract contract AllowanceHolderBase is TransientStorageLayout, FreeMemory {
    using SafeTransferLib for IERC20;
    using CheckCall for address payable;

    function _rejectIfERC20(address payable maybeERC20, bytes calldata data) private view DANGEROUS_freeMemory {
        // We could just choose a random address for this check, but to make
        // confused deputy attacks harder for tokens that might be badly behaved
        // (e.g. tokens with blacklists), we choose to copy the first argument
        // out of `data` and mask it as an address. If there isn't enough
        // `data`, we use 0xdead instead.
        address target;
        if (data.length > 0x10) {
            target = address(uint160(bytes20(data[0x10:])));
        }
        // EIP-1352 (not adopted) specifies 0xffff as the maximum precompile
        if (target <= address(0xffff)) {
            // 0xdead is a conventional burn address; we assume that it is not treated specially
            target = address(0xdead);
        }
        bytes memory testData = abi.encodeCall(IERC20.balanceOf, target);
        if (maybeERC20.checkCall(testData, 0x20)) revert ConfusedDeputy();
    }

    function _msgSender() private view returns (address sender) {
        if ((sender = msg.sender) == address(this)) {
            assembly ("memory-safe") {
                sender := shr(0x60, calldataload(sub(calldatasize(), 0x14)))
            }
        }
    }

    /// @dev This virtual function provides the implementation for the function
    ///      of the same name in `IAllowanceHolder`. It is unimplemented in this
    ///      base contract to accommodate the customization required to support
    ///      both chains that have EIP-1153 (transient storage) and those that
    ///      don't.
    function exec(address operator, address token, uint256 amount, address payable target, bytes calldata data)
        internal
        virtual
        returns (bytes memory result);

    /// @dev This is the majority of the implementation of IAllowanceHolder.exec
    ///      . The arguments have the same meaning as documented there.
    /// @return result
    /// @return sender The (possibly forwarded) message sender that is
    ///                requesting the allowance be set. Provided to avoid
    ///                duplicated computation in customized `exec`
    /// @return allowance The slot where the ephemeral allowance is
    ///                   stored. Provided to avoid duplicated computation in
    ///                   customized `exec`
    function _exec(address operator, address token, uint256 amount, address payable target, bytes calldata data)
        internal
        returns (bytes memory result, address sender, TSlot allowance)
    {
        // This contract has no special privileges, except for the allowances it
        // holds. In order to prevent abusing those allowances, we prohibit
        // sending arbitrary calldata (doing `target.call(data)`) to any
        // contract that might be an ERC20.
        _rejectIfERC20(target, data);

        sender = _msgSender();
        allowance = _ephemeralAllowance(operator, sender, token);
        _set(allowance, amount);

        // For gas efficiency we're omitting a bunch of checks here. Notably,
        // we're omitting the check that `address(this)` has sufficient value to
        // send (we know it does), and we're omitting the check that `target`
        // contains code (we already checked in `_rejectIfERC20`).
        assembly ("memory-safe") {
            result := mload(0x40)
            calldatacopy(result, data.offset, data.length)
            // ERC-2771 style msgSender forwarding https://eips.ethereum.org/EIPS/eip-2771
            mstore(add(result, data.length), shl(0x60, sender))
            let success := call(gas(), target, callvalue(), result, add(data.length, 0x14), 0x00, 0x00)
            let ptr := add(result, 0x20)
            returndatacopy(ptr, 0x00, returndatasize())
            switch success
            case 0 { revert(ptr, returndatasize()) }
            default {
                mstore(result, returndatasize())
                mstore(0x40, add(ptr, returndatasize()))
            }
        }
    }

    /// @dev This provides the implementation of the function of the same name
    ///      in `IAllowanceHolder`.
    function transferFrom(address token, address owner, address recipient, uint256 amount) internal {
        // msg.sender is the assumed and later validated operator
        TSlot allowance = _ephemeralAllowance(msg.sender, owner, token);
        // validation of the ephemeral allowance for operator, owner, token via
        // uint underflow
        _set(allowance, _get(allowance) - amount);
        // `safeTransferFrom` does not check that `token` actually contains
        // code. It is the responsibility of integrating code to check for that
        // if vacuous success is a security concern.
        IERC20(token).safeTransferFrom(owner, recipient, amount);
    }

    fallback() external payable {
        uint256 selector;
        assembly ("memory-safe") {
            selector := shr(0xe0, calldataload(0x00))
        }
        if (selector == uint256(uint32(IAllowanceHolder.transferFrom.selector))) {
            address token;
            address owner;
            address recipient;
            uint256 amount;
            assembly ("memory-safe") {
                // We do not validate `calldatasize()`. If the calldata is short
                // enough that `amount` is null, this call is a harmless no-op.
                let err := callvalue()
                token := calldataload(0x04)
                err := or(err, shr(0xa0, token))
                owner := calldataload(0x24)
                err := or(err, shr(0xa0, owner))
                recipient := calldataload(0x44)
                err := or(err, shr(0xa0, recipient))
                if err { revert(0x00, 0x00) }
                amount := calldataload(0x64)
            }

            transferFrom(token, owner, recipient, amount);

            // return true;
            assembly ("memory-safe") {
                mstore(0x00, 0x01)
                return(0x00, 0x20)
            }
        } else if (selector == uint256(uint32(IAllowanceHolder.exec.selector))) {
            address operator;
            address token;
            uint256 amount;
            address payable target;
            bytes calldata data;
            assembly ("memory-safe") {
                // We do not validate `calldatasize()`. If the calldata is short
                // enough that `data` is null, it will alias `operator`. This
                // results in either an OOG (because `operator` encodes a
                // too-long `bytes`) or is a harmless no-op (because `operator`
                // encodes a valid length, but not an address capable of making
                // calls). If the calldata is _so_ sort that `target` is null,
                // we will revert because it contains no code.
                operator := calldataload(0x04)
                let err := shr(0xa0, operator)
                token := calldataload(0x24)
                err := or(err, shr(0xa0, token))
                amount := calldataload(0x44)
                target := calldataload(0x64)
                err := or(err, shr(0xa0, target))
                if err { revert(0x00, 0x00) }
                // We perform no validation that `data` is reasonable.
                data.offset := add(0x04, calldataload(0x84))
                data.length := calldataload(data.offset)
                data.offset := add(0x20, data.offset)
            }

            bytes memory result = exec(operator, token, amount, target, data);

            // return result;
            assembly ("memory-safe") {
                let returndata := sub(result, 0x20)
                mstore(returndata, 0x20)
                return(returndata, add(0x40, mload(result)))
            }
        } else if (selector == uint256(uint32(IERC20.balanceOf.selector))) {
            // balanceOf(address) reverts with a single byte of returndata,
            // making it more gas efficient to pass the `_rejectERC20` check
            assembly ("memory-safe") {
                revert(0x00, 0x01)
            }
        } else {
            // emulate standard Solidity behavior
            assembly ("memory-safe") {
                revert(0x00, 0x00)
            }
        }
    }
}

File 3 of 10 : TransientStorageMock.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {TransientStorageBase} from "./TransientStorageBase.sol";

abstract contract TransientStorageMock is TransientStorageBase {
    function _get(TSlot s) internal view override returns (uint256 r) {
        assembly ("memory-safe") {
            r := sload(s)
        }
    }

    function _set(TSlot s, uint256 v) internal override {
        assembly ("memory-safe") {
            sstore(s, v)
        }
    }

    bytes32 private _sentinel;

    constructor() {
        uint256 _sentinelSlot;
        assembly ("memory-safe") {
            _sentinelSlot := _sentinel.slot
        }
        assert(_sentinelSlot == 0);
    }
}

File 4 of 10 : IAllowanceHolder.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

interface IAllowanceHolder {
    /// @notice Executes against `target` with the `data` payload. Prior to execution, token permits
    ///         are temporarily stored for the duration of the transaction. These permits can be
    ///         consumed by the `operator` during the execution
    /// @notice `operator` consumes the funds during its operations by calling back into
    ///         `AllowanceHolder` with `transferFrom`, consuming a token permit.
    /// @dev Neither `exec` nor `transferFrom` check that `token` contains code.
    /// @dev msg.sender is forwarded to target appended to the msg data (similar to ERC-2771)
    /// @param operator An address which is allowed to consume the token permits
    /// @param token The ERC20 token the caller has authorised to be consumed
    /// @param amount The quantity of `token` the caller has authorised to be consumed
    /// @param target A contract to execute operations with `data`
    /// @param data The data to forward to `target`
    /// @return result The returndata from calling `target` with `data`
    /// @notice If calling `target` with `data` reverts, the revert is propagated
    function exec(address operator, address token, uint256 amount, address payable target, bytes calldata data)
        external
        payable
        returns (bytes memory result);

    /// @notice The counterpart to `exec` which allows for the consumption of token permits later
    ///         during execution
    /// @dev *DOES NOT* check that `token` contains code. This function vacuously succeeds if
    ///      `token` is empty.
    /// @dev can only be called by the `operator` previously registered in `exec`
    /// @param token The ERC20 token to transfer
    /// @param owner The owner of tokens to transfer
    /// @param recipient The destination/beneficiary of the ERC20 `transferFrom`
    /// @param amount The quantity of `token` to transfer`
    /// @return true
    function transferFrom(address token, address owner, address recipient, uint256 amount) external returns (bool);
}

File 5 of 10 : IERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

interface IERC20 {
    function totalSupply() external view returns (uint256);
    function balanceOf(address) external view returns (uint256);
    function transfer(address, uint256) external returns (bool);
    function transferFrom(address, address, uint256) external returns (bool);
    function approve(address, uint256) external returns (bool);
    function allowance(address, address) external view returns (uint256);

    event Transfer(address indexed, address indexed, uint256);
    event Approval(address indexed, address indexed, uint256);
}

interface IERC20Meta is IERC20 {
    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
}

File 6 of 10 : SafeTransferLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.25;

import {IERC20} from "../IERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    uint32 private constant _TRANSFER_FROM_FAILED_SELECTOR = 0x7939f424; // bytes4(keccak256("TransferFromFailed()"))
    uint32 private constant _TRANSFER_FAILED_SELECTOR = 0x90b8ec18; // bytes4(keccak256("TransferFailed()"))
    uint32 private constant _APPROVE_FAILED_SELECTOR = 0x3e3f8f73; // bytes4(keccak256("ApproveFailed()"))

    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address payable to, uint256 amount) internal {
        assembly ("memory-safe") {
            // Transfer the ETH and store if it succeeded or not.
            if iszero(call(gas(), to, amount, 0, 0, 0, 0)) {
                let freeMemoryPointer := mload(0x40)
                returndatacopy(freeMemoryPointer, 0, returndatasize())
                revert(freeMemoryPointer, returndatasize())
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        assembly ("memory-safe") {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)) {
                returndatacopy(freeMemoryPointer, 0, returndatasize())
                revert(freeMemoryPointer, returndatasize())
            }
            // We check that the call either returned exactly 1 (can't just be non-zero data), or had no
            // return data.
            if iszero(or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()))) {
                mstore(0, _TRANSFER_FROM_FAILED_SELECTOR)
                revert(0x1c, 0x04)
            }
        }
    }

    function safeTransfer(IERC20 token, address to, uint256 amount) internal {
        assembly ("memory-safe") {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)) {
                returndatacopy(freeMemoryPointer, 0, returndatasize())
                revert(freeMemoryPointer, returndatasize())
            }
            // We check that the call either returned exactly 1 (can't just be non-zero data), or had no
            // return data.
            if iszero(or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()))) {
                mstore(0, _TRANSFER_FAILED_SELECTOR)
                revert(0x1c, 0x04)
            }
        }
    }

    function safeApprove(IERC20 token, address to, uint256 amount) internal {
        assembly ("memory-safe") {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)) {
                returndatacopy(freeMemoryPointer, 0, returndatasize())
                revert(freeMemoryPointer, returndatasize())
            }
            // We check that the call either returned exactly 1 (can't just be non-zero data), or had no
            // return data.
            if iszero(or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()))) {
                mstore(0, _APPROVE_FAILED_SELECTOR)
                revert(0x1c, 0x04)
            }
        }
    }

    function safeApproveIfBelow(IERC20 token, address spender, uint256 amount) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (allowance < amount) {
            if (allowance != 0) {
                safeApprove(token, spender, 0);
            }
            safeApprove(token, spender, type(uint256).max);
        }
    }
}

File 7 of 10 : CheckCall.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

library CheckCall {
    /**
     * @notice `staticcall` another contract. Check the length of the return without reading it.
     * @dev contains protections against EIP-150-induced insufficient gas griefing
     * @dev reverts iff the target is not a contract or we encounter an out-of-gas
     * @return success true iff the call succeeded and returned at least `minReturnBytes` of return
     *                 data
     * @param target the contract (reverts if non-contract) on which to make the `staticcall`
     * @param data the calldata to pass
     * @param minReturnBytes `success` is false if the call doesn't return at least this much return
     *                       data
     */
    function checkCall(address target, bytes memory data, uint256 minReturnBytes)
        internal
        view
        returns (bool success)
    {
        assembly ("memory-safe") {
            let beforeGas
            {
                let offset := add(data, 0x20)
                let length := mload(data)
                beforeGas := gas()
                success := staticcall(gas(), target, offset, length, 0x00, 0x00)
            }

            // `verbatim` can't work in inline assembly. Assignment of a value to a variable costs
            // gas (although how much is unpredictable because it depends on the Yul/IR optimizer),
            // as does the `GAS` opcode itself. Therefore, the `gas()` below returns less than the
            // actual amount of gas available for computation at the end of the call. Also
            // `beforeGas` above is exclusive of the preparing of the stack for `staticcall` as well
            // as the gas costs of the `staticcall` paid by the caller (e.g. cold account
            // access). All this makes the check below slightly too conservative. However, we do not
            // correct this because the correction would become outdated (possibly too permissive)
            // if the opcodes are repriced.
            let afterGas := gas()

            for {} 1 {} {
                if iszero(returndatasize()) {
                    // The absence of returndata means that it's possible that either we called an
                    // address without code or that the call reverted due to out-of-gas. We must
                    // check.
                    switch success
                    case 0 {
                        // Check whether the call reverted due to out-of-gas.
                        // https://eips.ethereum.org/EIPS/eip-150
                        // https://ronan.eth.limo/blog/ethereum-gas-dangers/
                        // We apply the "all but one 64th" rule twice because `target` could
                        // plausibly be a proxy. We apply it only twice because we assume only a
                        // single level of indirection.
                        let remainingGas := shr(6, beforeGas)
                        remainingGas := add(remainingGas, shr(6, sub(beforeGas, remainingGas)))
                        if iszero(lt(remainingGas, afterGas)) {
                            // The call failed due to not enough gas left. We deliberately consume
                            // all remaining gas with `invalid` (instead of `revert`) to make this
                            // failure distinguishable to our caller.
                            invalid()
                        }
                        // `success` is false because the call reverted
                    }
                    default {
                        // Check whether we called an address with no code (gas expensive).
                        if iszero(extcodesize(target)) { revert(0x00, 0x00) }
                        // We called a contract which returned no data; this is only a success if we
                        // were expecting no data.
                        success := iszero(minReturnBytes)
                    }
                    break
                }
                // The presence of returndata indicates that we definitely executed code. It also
                // means that the call didn't revert due to out-of-gas, if it reverted. We can omit
                // a bunch of checks.
                success := gt(success, lt(returndatasize(), minReturnBytes))
                break
            }
        }
    }
}

File 8 of 10 : FreeMemory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

abstract contract FreeMemory {
    modifier DANGEROUS_freeMemory() {
        uint256 freeMemPtr;
        assembly ("memory-safe") {
            freeMemPtr := mload(0x40)
        }
        _;
        assembly ("memory-safe") {
            mstore(0x40, freeMemPtr)
        }
    }
}

File 9 of 10 : TransientStorageLayout.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {TransientStorageBase} from "./TransientStorageBase.sol";

abstract contract TransientStorageLayout is TransientStorageBase {
    /// @dev The key for this ephemeral allowance is keccak256(abi.encodePacked(operator, owner, token)).
    function _ephemeralAllowance(address operator, address owner, address token) internal pure returns (TSlot r) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(0x28, token)
            mstore(0x14, owner)
            mstore(0x00, operator)
            // allowance slot is keccak256(abi.encodePacked(operator, owner, token))
            r := keccak256(0x0c, 0x3c)
            // restore dirtied free pointer
            mstore(0x40, ptr)
        }
    }
}

File 10 of 10 : TransientStorageBase.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

abstract contract TransientStorageBase {
    type TSlot is bytes32;

    function _get(TSlot s) internal view virtual returns (uint256);

    function _set(TSlot s, uint256 v) internal virtual;
}

Settings
{
  "remappings": [
    "solmate/=lib/solmate/",
    "permit2/=lib/permit2/",
    "forge-std/=lib/forge-std/src/",
    "forge-gas-snapshot/=lib/forge-gas-snapshot/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000000,
    "details": {
      "constantOptimizer": true,
      "yul": true
    }
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ConfusedDeputy","type":"error"},{"stateMutability":"payable","type":"fallback"}]

608080604052346030576d5e88410ccdfade4a5efae4b49562301480156035575b156030576103f790816100408239f35b600080fd5b50617a694614602056fe60806040818152600091823560e01c6315dacbea810361012e5750506004359060243590604435928360a01c8360a01c8260a01c3417171761012a57604080516028839052601485905233600052603c600c2091528054606435918282039182116100fd57936064936020969389969387945573ffffffffffffffffffffffffffffffffffffffff80998194519a8b977f23b872dd0000000000000000000000000000000000000000000000000000000089521660048801521660248601526044850152165af1156100f457503d15601f3d1160018351141617156100e75780600160209252f35b637939f42490526004601cfd5b903d90823e3d90fd5b6024887f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b8480fd5b909290632213bc0b81036103e557506004359260243593606435948560a01c8160a01c8360a01c17176103e157608435908160040135938560108611610361575b73ffffffffffffffffffffffffffffffffffffffff61ffff8183161115610357575b8060208401927f70a08231000000000000000000000000000000000000000000000000000000008452166024840152602483526060830183811067ffffffffffffffff82111761032a5789528916878084515a94845afa905a60203d10933d156102f757505050115b6102ce5791602497918693885233943033146102a0575b95610238601492878798999092919260405193602852601452600052603c600c2091604052565b966044358855818a519b8c9501853760601b81840152019134905af160208501903d84833e1561029c57503d845260203d8501018352557fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe082019160208352510190f35b3d90fd5b367fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec013560601c9550610211565b600487517fe758b8d5000000000000000000000000000000000000000000000000000000008152fd5b919350908215610314575050503b1561031057856101fa565b8580fd5b90919250600681811c809203901c01106101fa57fe5b6024897f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b61dead9150610191565b50846010116103105760348301357fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008082169160147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff08901106103c9575b505060601c61016f565b908092506010886014030160031b1b161638806103bf565b8380fd5b6370a08231036103f457600190fd5b80fd

Deployed Bytecode

0x60806040818152600091823560e01c6315dacbea810361012e5750506004359060243590604435928360a01c8360a01c8260a01c3417171761012a57604080516028839052601485905233600052603c600c2091528054606435918282039182116100fd57936064936020969389969387945573ffffffffffffffffffffffffffffffffffffffff80998194519a8b977f23b872dd0000000000000000000000000000000000000000000000000000000089521660048801521660248601526044850152165af1156100f457503d15601f3d1160018351141617156100e75780600160209252f35b637939f42490526004601cfd5b903d90823e3d90fd5b6024887f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b8480fd5b909290632213bc0b81036103e557506004359260243593606435948560a01c8160a01c8360a01c17176103e157608435908160040135938560108611610361575b73ffffffffffffffffffffffffffffffffffffffff61ffff8183161115610357575b8060208401927f70a08231000000000000000000000000000000000000000000000000000000008452166024840152602483526060830183811067ffffffffffffffff82111761032a5789528916878084515a94845afa905a60203d10933d156102f757505050115b6102ce5791602497918693885233943033146102a0575b95610238601492878798999092919260405193602852601452600052603c600c2091604052565b966044358855818a519b8c9501853760601b81840152019134905af160208501903d84833e1561029c57503d845260203d8501018352557fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe082019160208352510190f35b3d90fd5b367fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec013560601c9550610211565b600487517fe758b8d5000000000000000000000000000000000000000000000000000000008152fd5b919350908215610314575050503b1561031057856101fa565b8580fd5b90919250600681811c809203901c01106101fa57fe5b6024897f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b61dead9150610191565b50846010116103105760348301357fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008082169160147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff08901106103c9575b505060601c61016f565b908092506010886014030160031b1b161638806103bf565b8380fd5b6370a08231036103f457600190fd5b80fd

Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.